Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 68
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Lonardi
2
70 kgSyritsa
3
85 kgDehairs
4
82 kgSchulting
5
70 kgThijssen
6
74 kgRasenberg
7
78 kgAbma
9
86 kgEising
10
80 kgDekker
11
80 kgMareczko
12
67 kgVisser
14
75 kgDissel
15
77 kgColnaghi
16
63 kgTeunissen
17
73 kgBohli
18
71 kgde Jong
19
72 kgKrijnsen
20
73 kgZanoncello
21
64 kgGabburo
23
63 kgSalby
24
68 kgSimmons
25
68 kgHeming
26
68 kgDeweirdt
28
69 kg
2
70 kgSyritsa
3
85 kgDehairs
4
82 kgSchulting
5
70 kgThijssen
6
74 kgRasenberg
7
78 kgAbma
9
86 kgEising
10
80 kgDekker
11
80 kgMareczko
12
67 kgVisser
14
75 kgDissel
15
77 kgColnaghi
16
63 kgTeunissen
17
73 kgBohli
18
71 kgde Jong
19
72 kgKrijnsen
20
73 kgZanoncello
21
64 kgGabburo
23
63 kgSalby
24
68 kgSimmons
25
68 kgHeming
26
68 kgDeweirdt
28
69 kg
Weight (KG) →
Result →
86
63
2
28
# | Rider | Weight (KG) |
---|---|---|
2 | LONARDI Giovanni | 70 |
3 | SYRITSA Gleb | 85 |
4 | DEHAIRS Simon | 82 |
5 | SCHULTING Peter | 70 |
6 | THIJSSEN Gerben | 74 |
7 | RASENBERG Martijn | 78 |
9 | ABMA Elmar | 86 |
10 | EISING Tijmen | 80 |
11 | DEKKER David | 80 |
12 | MARECZKO Jakub | 67 |
14 | VISSER Guillaume | 75 |
15 | DISSEL Bram | 77 |
16 | COLNAGHI Luca | 63 |
17 | TEUNISSEN Mike | 73 |
18 | BOHLI Tom | 71 |
19 | DE JONG Timo | 72 |
20 | KRIJNSEN Jelte | 73 |
21 | ZANONCELLO Enrico | 64 |
23 | GABBURO Davide | 63 |
24 | SALBY Alexander | 68 |
25 | SIMMONS Colby | 68 |
26 | HEMING Miká | 68 |
28 | DEWEIRDT Siebe | 69 |