Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Poulhiès
1
75 kgFonseca
2
56 kgFrapporti
3
69 kgGougeard
4
70 kgvan Goethem
5
77 kgVandenbergh
6
86 kgOffredo
7
69 kgChavanel
8
73 kgDevriendt
9
70 kgSeynaeve
10
67 kgPlanckaert
11
65 kgBackaert
12
78 kgVenturini
13
60 kgPichon
14
69 kgVachon
15
65 kgSteels
16
78 kgvan Ginneken
17
72 kgFeillu
18
69 kgBagdonas
19
78 kg
1
75 kgFonseca
2
56 kgFrapporti
3
69 kgGougeard
4
70 kgvan Goethem
5
77 kgVandenbergh
6
86 kgOffredo
7
69 kgChavanel
8
73 kgDevriendt
9
70 kgSeynaeve
10
67 kgPlanckaert
11
65 kgBackaert
12
78 kgVenturini
13
60 kgPichon
14
69 kgVachon
15
65 kgSteels
16
78 kgvan Ginneken
17
72 kgFeillu
18
69 kgBagdonas
19
78 kg
Weight (KG) →
Result →
86
56
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | POULHIÈS Stéphane | 75 |
2 | FONSECA Armindo | 56 |
3 | FRAPPORTI Marco | 69 |
4 | GOUGEARD Alexis | 70 |
5 | VAN GOETHEM Brian | 77 |
6 | VANDENBERGH Stijn | 86 |
7 | OFFREDO Yoann | 69 |
8 | CHAVANEL Sylvain | 73 |
9 | DEVRIENDT Tom | 70 |
10 | SEYNAEVE Lander | 67 |
11 | PLANCKAERT Baptiste | 65 |
12 | BACKAERT Frederik | 78 |
13 | VENTURINI Clément | 60 |
14 | PICHON Laurent | 69 |
15 | VACHON Florian | 65 |
16 | STEELS Stijn | 78 |
17 | VAN GINNEKEN Sjoerd | 72 |
18 | FEILLU Brice | 69 |
19 | BAGDONAS Gediminas | 78 |