Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 51
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Pikkuus
1
76 kgOsokin
2
73 kgMytnik
3
75 kgSchmeisser
5
69 kgDrogan
6
69 kgLauke
8
73 kgKlasa
10
79 kgDiers
12
73 kgMoravec
14
74 kgVasile
18
66 kgAverin
21
69 kgBernaudeau
24
64 kgHansen
28
63 kgHayton
34
69 kgArencibia
38
82 kgChaplygin
52
80 kgHartnick
53
76 kgVázquez
56
82 kgGlaus
72
67 kgDebreceni
91
78 kg
1
76 kgOsokin
2
73 kgMytnik
3
75 kgSchmeisser
5
69 kgDrogan
6
69 kgLauke
8
73 kgKlasa
10
79 kgDiers
12
73 kgMoravec
14
74 kgVasile
18
66 kgAverin
21
69 kgBernaudeau
24
64 kgHansen
28
63 kgHayton
34
69 kgArencibia
38
82 kgChaplygin
52
80 kgHartnick
53
76 kgVázquez
56
82 kgGlaus
72
67 kgDebreceni
91
78 kg
Weight (KG) →
Result →
82
63
1
91
# | Rider | Weight (KG) |
---|---|---|
1 | PIKKUUS Aavo | 76 |
2 | OSOKIN Vladimir | 73 |
3 | MYTNIK Tadeusz | 75 |
5 | SCHMEISSER Siegbert | 69 |
6 | DROGAN Bernd | 69 |
8 | LAUKE Gerhard | 73 |
10 | KLASA Michal | 79 |
12 | DIERS Karl-Dietrich | 73 |
14 | MORAVEC Vlastimil | 74 |
18 | VASILE Teodor | 66 |
21 | AVERIN Alexandre | 69 |
24 | BERNAUDEAU Jean-René | 64 |
28 | HANSEN Pål Henning | 63 |
34 | HAYTON Dudley | 69 |
38 | ARENCIBIA Gregorio Aldo | 82 |
52 | CHAPLYGIN Valery | 80 |
53 | HARTNICK Hans-Joachim | 76 |
56 | VÁZQUEZ Raúl Marcelo | 82 |
72 | GLAUS Gilbert | 67 |
91 | DEBRECENI Tibor | 78 |