Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Sørensen
1
71 kgGusev
2
67 kgJoly
4
74 kgCasar
5
63 kgSeigneur
6
71 kgGoubert
7
62 kgRoy
10
70 kgFédrigo
11
66 kgVandborg
12
75 kgCoenen
13
67 kgVan Impe
14
75 kgD'Hollander
15
74 kgChaurreau
16
60 kgMarichal
17
72 kgGilbert
18
75 kgVeuchelen
19
75 kgVan Huffel
20
66 kgErmeti
21
60 kgDeignan
22
65 kgPortal
23
70 kgVoigt
24
76 kgBessy
25
65 kgHalgand
26
67 kgBergès
28
68 kg
1
71 kgGusev
2
67 kgJoly
4
74 kgCasar
5
63 kgSeigneur
6
71 kgGoubert
7
62 kgRoy
10
70 kgFédrigo
11
66 kgVandborg
12
75 kgCoenen
13
67 kgVan Impe
14
75 kgD'Hollander
15
74 kgChaurreau
16
60 kgMarichal
17
72 kgGilbert
18
75 kgVeuchelen
19
75 kgVan Huffel
20
66 kgErmeti
21
60 kgDeignan
22
65 kgPortal
23
70 kgVoigt
24
76 kgBessy
25
65 kgHalgand
26
67 kgBergès
28
68 kg
Weight (KG) →
Result →
76
60
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | SØRENSEN Nicki | 71 |
2 | GUSEV Vladimir | 67 |
4 | JOLY Sébastien | 74 |
5 | CASAR Sandy | 63 |
6 | SEIGNEUR Eddy | 71 |
7 | GOUBERT Stéphane | 62 |
10 | ROY Jérémy | 70 |
11 | FÉDRIGO Pierrick | 66 |
12 | VANDBORG Brian Bach | 75 |
13 | COENEN Johan | 67 |
14 | VAN IMPE Kevin | 75 |
15 | D'HOLLANDER Glenn | 74 |
16 | CHAURREAU Íñigo | 60 |
17 | MARICHAL Thierry | 72 |
18 | GILBERT Philippe | 75 |
19 | VEUCHELEN Frederik | 75 |
20 | VAN HUFFEL Wim | 66 |
21 | ERMETI Giairo | 60 |
22 | DEIGNAN Philip | 65 |
23 | PORTAL Nicolas | 70 |
24 | VOIGT Jens | 76 |
25 | BESSY Frédéric | 65 |
26 | HALGAND Patrice | 67 |
28 | BERGÈS Stéphane | 68 |