Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Planckaert
1
70 kgKoerts
2
78 kgVierhouten
3
71 kgHammond
5
71 kgVansevenant
6
65 kgDe Clercq
9
80 kgVerheyen
11
68 kgPeers
13
73 kgVan Hyfte
16
70 kgCheula
17
62 kgMcEwen
18
67 kgLjungqvist
19
73 kgGasparre
20
60 kgClerc
21
71 kgLefevre
23
66 kgStreel
24
69 kgRast
26
80 kgThijs
28
69 kg
1
70 kgKoerts
2
78 kgVierhouten
3
71 kgHammond
5
71 kgVansevenant
6
65 kgDe Clercq
9
80 kgVerheyen
11
68 kgPeers
13
73 kgVan Hyfte
16
70 kgCheula
17
62 kgMcEwen
18
67 kgLjungqvist
19
73 kgGasparre
20
60 kgClerc
21
71 kgLefevre
23
66 kgStreel
24
69 kgRast
26
80 kgThijs
28
69 kg
Weight (KG) →
Result →
80
60
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | PLANCKAERT Jo | 70 |
2 | KOERTS Jans | 78 |
3 | VIERHOUTEN Aart | 71 |
5 | HAMMOND Roger | 71 |
6 | VANSEVENANT Wim | 65 |
9 | DE CLERCQ Hans | 80 |
11 | VERHEYEN Geert | 68 |
13 | PEERS Chris | 73 |
16 | VAN HYFTE Paul | 70 |
17 | CHEULA Giampaolo | 62 |
18 | MCEWEN Robbie | 67 |
19 | LJUNGQVIST Marcus | 73 |
20 | GASPARRE Graziano | 60 |
21 | CLERC Aurélien | 71 |
23 | LEFEVRE David | 66 |
24 | STREEL Marc | 69 |
26 | RAST Grégory | 80 |
28 | THIJS Erwin | 69 |