Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Jonker
1
69 kgDonati
2
75 kgSimon
3
70 kgBortolami
4
73 kgBourguignon
5
72 kgden Bakker
6
71 kgDekker
7
66 kgKasputis
8
83 kgVan Hyfte
9
70 kgGabriel
10
60 kgMattan
11
69 kgHeulot
12
69 kgMorin
13
79 kgMoerenhout
15
74 kgHalgand
16
67 kgVasseur
17
70 kgJulich
18
68 kgMillar
19
79 kgSunderland
20
65 kg
1
69 kgDonati
2
75 kgSimon
3
70 kgBortolami
4
73 kgBourguignon
5
72 kgden Bakker
6
71 kgDekker
7
66 kgKasputis
8
83 kgVan Hyfte
9
70 kgGabriel
10
60 kgMattan
11
69 kgHeulot
12
69 kgMorin
13
79 kgMoerenhout
15
74 kgHalgand
16
67 kgVasseur
17
70 kgJulich
18
68 kgMillar
19
79 kgSunderland
20
65 kg
Weight (KG) →
Result →
83
60
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | JONKER Patrick | 69 |
2 | DONATI Massimo | 75 |
3 | SIMON François | 70 |
4 | BORTOLAMI Gianluca | 73 |
5 | BOURGUIGNON Thierry | 72 |
6 | DEN BAKKER Maarten | 71 |
7 | DEKKER Erik | 66 |
8 | KASPUTIS Artūras | 83 |
9 | VAN HYFTE Paul | 70 |
10 | GABRIEL Frédéric | 60 |
11 | MATTAN Nico | 69 |
12 | HEULOT Stéphane | 69 |
13 | MORIN Anthony | 79 |
15 | MOERENHOUT Koos | 74 |
16 | HALGAND Patrice | 67 |
17 | VASSEUR Cédric | 70 |
18 | JULICH Bobby | 68 |
19 | MILLAR David | 79 |
20 | SUNDERLAND Scott | 65 |