Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.4 * weight + 229
This means that on average for every extra kilogram weight a rider loses -2.4 positions in the result.
Rosseler
2
78 kgChadwick
4
75 kgSteegmans
11
82 kgVan Huffel
13
66 kgBoonen
20
82 kgRenders
43
63 kgZonneveld
47
63 kgFeys
50
80 kgVanthourenhout
53
65 kgCommeyne
56
70 kgHovelijnck
63
75 kgCoenen
64
67 kgCaethoven
90
67 kgVan Hecke
107
69 kgWilson
110
72 kgVan Goolen
113
70 kgde Wilde
115
74 kgDockx
118
64 kg
2
78 kgChadwick
4
75 kgSteegmans
11
82 kgVan Huffel
13
66 kgBoonen
20
82 kgRenders
43
63 kgZonneveld
47
63 kgFeys
50
80 kgVanthourenhout
53
65 kgCommeyne
56
70 kgHovelijnck
63
75 kgCoenen
64
67 kgCaethoven
90
67 kgVan Hecke
107
69 kgWilson
110
72 kgVan Goolen
113
70 kgde Wilde
115
74 kgDockx
118
64 kg
Weight (KG) →
Result →
82
63
2
118
# | Rider | Weight (KG) |
---|---|---|
2 | ROSSELER Sébastien | 78 |
4 | CHADWICK Glen Alan | 75 |
11 | STEEGMANS Gert | 82 |
13 | VAN HUFFEL Wim | 66 |
20 | BOONEN Tom | 82 |
43 | RENDERS Sven | 63 |
47 | ZONNEVELD Thijs | 63 |
50 | FEYS Wim | 80 |
53 | VANTHOURENHOUT Sven | 65 |
56 | COMMEYNE Davy | 70 |
63 | HOVELIJNCK Kurt | 75 |
64 | COENEN Johan | 67 |
90 | CAETHOVEN Steven | 67 |
107 | VAN HECKE Preben | 69 |
110 | WILSON Matthew | 72 |
113 | VAN GOOLEN Jurgen | 70 |
115 | DE WILDE Sjef | 74 |
118 | DOCKX Bart | 64 |