Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 58
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Weening
1
68 kgDekkers
3
72 kgZonneveld
7
63 kgRooijakkers
10
68 kgMaaskant
13
76 kgGiling
23
72 kgMol
29
83 kgde Kort
31
69 kgvan Hummel
33
64 kgHoogerland
41
65 kgHeijboer
49
78 kgPosthuma
53
76 kgGoesinnen
64
75 kgClement
70
66 kgScheuneman
77
75 kgten Dam
78
67 kgHendriks
88
82 kg
1
68 kgDekkers
3
72 kgZonneveld
7
63 kgRooijakkers
10
68 kgMaaskant
13
76 kgGiling
23
72 kgMol
29
83 kgde Kort
31
69 kgvan Hummel
33
64 kgHoogerland
41
65 kgHeijboer
49
78 kgPosthuma
53
76 kgGoesinnen
64
75 kgClement
70
66 kgScheuneman
77
75 kgten Dam
78
67 kgHendriks
88
82 kg
Weight (KG) →
Result →
83
63
1
88
# | Rider | Weight (KG) |
---|---|---|
1 | WEENING Pieter | 68 |
3 | DEKKERS Hans | 72 |
7 | ZONNEVELD Thijs | 63 |
10 | ROOIJAKKERS Piet | 68 |
13 | MAASKANT Martijn | 76 |
23 | GILING Bas | 72 |
29 | MOL Wouter | 83 |
31 | DE KORT Koen | 69 |
33 | VAN HUMMEL Kenny | 64 |
41 | HOOGERLAND Johnny | 65 |
49 | HEIJBOER Mathieu | 78 |
53 | POSTHUMA Joost | 76 |
64 | GOESINNEN Floris | 75 |
70 | CLEMENT Stef | 66 |
77 | SCHEUNEMAN Niels | 75 |
78 | TEN DAM Laurens | 67 |
88 | HENDRIKS Arjan | 82 |