Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 67
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
van Dijk
1
71 kgvan der Breggen
2
56 kgBrand
3
57 kgvan Vleuten
4
59 kgvan den Broek-Blaak
5
64 kgMackaij
6
57 kgPieters
7
58 kgMarkus
10
61 kgTenniglo
12
64 kgNagengast
13
61 kgBoogaard
14
59 kgKoster
15
56 kgAdegeest
17
57 kgVollering
21
57 kgKorevaar
22
59 kgVan Velzen
47
57 kg
1
71 kgvan der Breggen
2
56 kgBrand
3
57 kgvan Vleuten
4
59 kgvan den Broek-Blaak
5
64 kgMackaij
6
57 kgPieters
7
58 kgMarkus
10
61 kgTenniglo
12
64 kgNagengast
13
61 kgBoogaard
14
59 kgKoster
15
56 kgAdegeest
17
57 kgVollering
21
57 kgKorevaar
22
59 kgVan Velzen
47
57 kg
Weight (KG) →
Result →
71
56
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DIJK Ellen | 71 |
2 | VAN DER BREGGEN Anna | 56 |
3 | BRAND Lucinda | 57 |
4 | VAN VLEUTEN Annemiek | 59 |
5 | VAN DEN BROEK-BLAAK Chantal | 64 |
6 | MACKAIJ Floortje | 57 |
7 | PIETERS Amy | 58 |
10 | MARKUS Riejanne | 61 |
12 | TENNIGLO Moniek | 64 |
13 | NAGENGAST Fleur | 61 |
14 | BOOGAARD Maaike | 59 |
15 | KOSTER Anouska | 56 |
17 | ADEGEEST Loes | 57 |
21 | VOLLERING Demi | 57 |
22 | KOREVAAR Jeanne | 59 |
47 | VAN VELZEN Bryony | 57 |