Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.6 * weight + 120
This means that on average for every extra kilogram weight a rider loses -1.6 positions in the result.
Markus
1
61 kgBujak
2
63 kgVos
3
58 kgAndersen
5
55 kgKessler
6
60 kgConfalonieri
15
56 kgvan Houtum
19
55 kgKuijpers
21
73 kgde Baat
24
56 kgVandenbroucke
25
63 kgKastelijn
35
52 kgBoogaard
36
59 kgHannes
38
51 kgSolovei
40
56 kgPolspoel
46
59 kgOosterwoud
48
60 kgAdegeest
55
57 kgBetsema
62
54 kgGafinovitz
70
52 kg
1
61 kgBujak
2
63 kgVos
3
58 kgAndersen
5
55 kgKessler
6
60 kgConfalonieri
15
56 kgvan Houtum
19
55 kgKuijpers
21
73 kgde Baat
24
56 kgVandenbroucke
25
63 kgKastelijn
35
52 kgBoogaard
36
59 kgHannes
38
51 kgSolovei
40
56 kgPolspoel
46
59 kgOosterwoud
48
60 kgAdegeest
55
57 kgBetsema
62
54 kgGafinovitz
70
52 kg
Weight (KG) →
Result →
73
51
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | MARKUS Riejanne | 61 |
2 | BUJAK Eugenia | 63 |
3 | VOS Marianne | 58 |
5 | ANDERSEN Susanne | 55 |
6 | KESSLER Nina | 60 |
15 | CONFALONIERI Maria Giulia | 56 |
19 | VAN HOUTUM Céline | 55 |
21 | KUIJPERS Evy | 73 |
24 | DE BAAT Kim | 56 |
25 | VANDENBROUCKE Saartje | 63 |
35 | KASTELIJN Yara | 52 |
36 | BOOGAARD Maaike | 59 |
38 | HANNES Kaat | 51 |
40 | SOLOVEI Ganna | 56 |
46 | POLSPOEL Maaike | 59 |
48 | OOSTERWOUD Wendy | 60 |
55 | ADEGEEST Loes | 57 |
62 | BETSEMA Denise | 54 |
70 | GAFINOVITZ Rotem | 52 |