Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
van Dijk
1
74 kgSteels
2
73 kgDe Waele
4
62 kgPozzato
7
73 kgBrandt
8
66 kgVan De Walle
9
74 kgCioni
10
72 kgBodrogi
11
79 kgD'Hollander
13
74 kgGardeyn
14
75 kgClain
15
59 kgLöwik
16
72 kgPronk
20
73 kgDe Clercq
21
80 kgVoskamp
22
75 kgVerbrugghe
24
69 kgOmloop
26
78 kgPaolini
28
66 kg
1
74 kgSteels
2
73 kgDe Waele
4
62 kgPozzato
7
73 kgBrandt
8
66 kgVan De Walle
9
74 kgCioni
10
72 kgBodrogi
11
79 kgD'Hollander
13
74 kgGardeyn
14
75 kgClain
15
59 kgLöwik
16
72 kgPronk
20
73 kgDe Clercq
21
80 kgVoskamp
22
75 kgVerbrugghe
24
69 kgOmloop
26
78 kgPaolini
28
66 kg
Weight (KG) →
Result →
80
59
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DIJK Stefan | 74 |
2 | STEELS Tom | 73 |
4 | DE WAELE Fabien | 62 |
7 | POZZATO Filippo | 73 |
8 | BRANDT Christophe | 66 |
9 | VAN DE WALLE Jurgen | 74 |
10 | CIONI Dario David | 72 |
11 | BODROGI László | 79 |
13 | D'HOLLANDER Glenn | 74 |
14 | GARDEYN Gorik | 75 |
15 | CLAIN Médéric | 59 |
16 | LÖWIK Gerben | 72 |
20 | PRONK Matthé | 73 |
21 | DE CLERCQ Hans | 80 |
22 | VOSKAMP Bart | 75 |
24 | VERBRUGGHE Ief | 69 |
26 | OMLOOP Geert | 78 |
28 | PAOLINI Luca | 66 |