Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 21
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Skjerping
1
71 kgAaskov Pallesen
2
60 kgLunke
3
69 kgStokbro
5
70 kgWærenskjold
6
92 kgEikeland
7
68 kgMunk
8
67 kgSkot-Hansen
16
62 kgJacobs
17
78 kgUrianstad Bugge
18
61 kgÅrnes
19
80 kgAbrahamsen
22
78 kgHoelgaard
24
74 kgSchultz
25
60 kgKron
26
63 kgVanhoof
29
75 kgAasvold
31
61 kgDrege
33
78 kgRønning
34
74 kgNorsgaard
35
88 kgPattyn
38
63 kgVan Moer
40
79 kgKulset
45
58 kg
1
71 kgAaskov Pallesen
2
60 kgLunke
3
69 kgStokbro
5
70 kgWærenskjold
6
92 kgEikeland
7
68 kgMunk
8
67 kgSkot-Hansen
16
62 kgJacobs
17
78 kgUrianstad Bugge
18
61 kgÅrnes
19
80 kgAbrahamsen
22
78 kgHoelgaard
24
74 kgSchultz
25
60 kgKron
26
63 kgVanhoof
29
75 kgAasvold
31
61 kgDrege
33
78 kgRønning
34
74 kgNorsgaard
35
88 kgPattyn
38
63 kgVan Moer
40
79 kgKulset
45
58 kg
Weight (KG) →
Result →
92
58
1
45
# | Rider | Weight (KG) |
---|---|---|
1 | SKJERPING Kristoffer | 71 |
2 | AASKOV PALLESEN Jeppe | 60 |
3 | LUNKE Sindre | 69 |
5 | STOKBRO Andreas | 70 |
6 | WÆRENSKJOLD Søren | 92 |
7 | EIKELAND Ken Levi | 68 |
8 | MUNK Steffen | 67 |
16 | SKOT-HANSEN Aksel Bech | 62 |
17 | JACOBS Johan | 78 |
18 | URIANSTAD BUGGE Martin | 61 |
19 | ÅRNES Daniel | 80 |
22 | ABRAHAMSEN Jonas | 78 |
24 | HOELGAARD Markus | 74 |
25 | SCHULTZ Jesper | 60 |
26 | KRON Andreas | 63 |
29 | VANHOOF Ward | 75 |
31 | AASVOLD Kristian | 61 |
33 | DREGE André | 78 |
34 | RØNNING Vebjørn | 74 |
35 | NORSGAARD Mathias | 88 |
38 | PATTYN Steven | 63 |
40 | VAN MOER Brent | 79 |
45 | KULSET Magnus | 58 |