Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Planckaert
2
69 kgArntz
4
70 kgVeenstra
6
70 kgVanderaerden
7
74 kgBomans
11
74 kgDe Wilde
16
70 kgPieters
30
82 kgDernies
45
75 kgHeirweg
51
73 kgTolhoek
54
63 kgHoste
56
76 kgNijdam
57
70 kgMarie
63
68 kgDe Wolf
67
75 kgLilholt
68
72 kgMuseeuw
72
71 kgWampers
74
82 kgBruyneel
89
71 kgDemol
102
72 kg
2
69 kgArntz
4
70 kgVeenstra
6
70 kgVanderaerden
7
74 kgBomans
11
74 kgDe Wilde
16
70 kgPieters
30
82 kgDernies
45
75 kgHeirweg
51
73 kgTolhoek
54
63 kgHoste
56
76 kgNijdam
57
70 kgMarie
63
68 kgDe Wolf
67
75 kgLilholt
68
72 kgMuseeuw
72
71 kgWampers
74
82 kgBruyneel
89
71 kgDemol
102
72 kg
Weight (KG) →
Result →
82
63
2
102
# | Rider | Weight (KG) |
---|---|---|
2 | PLANCKAERT Eddy | 69 |
4 | ARNTZ Marcel | 70 |
6 | VEENSTRA Wiebren | 70 |
7 | VANDERAERDEN Eric | 74 |
11 | BOMANS Carlo | 74 |
16 | DE WILDE Etienne | 70 |
30 | PIETERS Peter | 82 |
45 | DERNIES Michel | 75 |
51 | HEIRWEG Dirk | 73 |
54 | TOLHOEK Patrick | 63 |
56 | HOSTE Frank | 76 |
57 | NIJDAM Jelle | 70 |
63 | MARIE Thierry | 68 |
67 | DE WOLF Fons | 75 |
68 | LILHOLT Søren | 72 |
72 | MUSEEUW Johan | 71 |
74 | WAMPERS Jean-Marie | 82 |
89 | BRUYNEEL Johan | 71 |
102 | DEMOL Dirk | 72 |