Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 8
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Mandri
1
66 kgGesink
2
70 kgBoasson Hagen
3
75 kgLadagnous
5
73 kgJérôme
6
65 kgLeezer
7
76 kgDyachenko
8
65 kgDi Grégorio
9
67 kgNordhaug
10
63 kgBoom
12
75 kgGérard
13
70 kgLemoine
14
73 kgRolland
15
70 kgSantaromita
16
58 kgStamsnijder
18
76 kgStetina
19
63 kgPatanchon
21
69 kgFlens
22
82 kgMonnerais
23
70 kgWilmann
24
69 kgBeppu
29
69 kgGruzdev
33
78 kg
1
66 kgGesink
2
70 kgBoasson Hagen
3
75 kgLadagnous
5
73 kgJérôme
6
65 kgLeezer
7
76 kgDyachenko
8
65 kgDi Grégorio
9
67 kgNordhaug
10
63 kgBoom
12
75 kgGérard
13
70 kgLemoine
14
73 kgRolland
15
70 kgSantaromita
16
58 kgStamsnijder
18
76 kgStetina
19
63 kgPatanchon
21
69 kgFlens
22
82 kgMonnerais
23
70 kgWilmann
24
69 kgBeppu
29
69 kgGruzdev
33
78 kg
Weight (KG) →
Result →
82
58
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | MANDRI René | 66 |
2 | GESINK Robert | 70 |
3 | BOASSON HAGEN Edvald | 75 |
5 | LADAGNOUS Matthieu | 73 |
6 | JÉRÔME Vincent | 65 |
7 | LEEZER Tom | 76 |
8 | DYACHENKO Alexandr | 65 |
9 | DI GRÉGORIO Rémy | 67 |
10 | NORDHAUG Lars Petter | 63 |
12 | BOOM Lars | 75 |
13 | GÉRARD Arnaud | 70 |
14 | LEMOINE Cyril | 73 |
15 | ROLLAND Pierre | 70 |
16 | SANTAROMITA Ivan | 58 |
18 | STAMSNIJDER Tom | 76 |
19 | STETINA Peter | 63 |
21 | PATANCHON Fabien | 69 |
22 | FLENS Rick | 82 |
23 | MONNERAIS Cyrille | 70 |
24 | WILMANN Frederik | 69 |
29 | BEPPU Fumiyuki | 69 |
33 | GRUZDEV Dmitriy | 78 |