Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Mohd Zariff
1
63 kgSainbayar
2
60 kgSosa
3
52 kgCarthy
4
69 kgRubio
6
56 kgOkamika
7
70 kgOsborne
8
70 kgChaves
9
55 kgZeits
10
73 kgTræen
11
63 kgChawchiangkwang
12
64 kgSmit
13
72 kgToumire
14
69 kgMoreno
15
59 kgBennett
16
58 kgSepúlveda
17
59 kgMolenaar
18
63 kgFernández
20
60 kgChaiyasombat
21
58 kgMoscon
22
71 kgPareja
24
52 kgJorgenson
26
69 kgBax
27
78 kg
1
63 kgSainbayar
2
60 kgSosa
3
52 kgCarthy
4
69 kgRubio
6
56 kgOkamika
7
70 kgOsborne
8
70 kgChaves
9
55 kgZeits
10
73 kgTræen
11
63 kgChawchiangkwang
12
64 kgSmit
13
72 kgToumire
14
69 kgMoreno
15
59 kgBennett
16
58 kgSepúlveda
17
59 kgMolenaar
18
63 kgFernández
20
60 kgChaiyasombat
21
58 kgMoscon
22
71 kgPareja
24
52 kgJorgenson
26
69 kgBax
27
78 kg
Weight (KG) →
Result →
78
52
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | MOHD ZARIFF Muhammad Nur Aiman | 63 |
2 | SAINBAYAR Jambaljamts | 60 |
3 | SOSA Iván Ramiro | 52 |
4 | CARTHY Hugh | 69 |
6 | RUBIO Einer | 56 |
7 | OKAMIKA Ander | 70 |
8 | OSBORNE Jason | 70 |
9 | CHAVES Esteban | 55 |
10 | ZEITS Andrey | 73 |
11 | TRÆEN Torstein | 63 |
12 | CHAWCHIANGKWANG Peerapol | 64 |
13 | SMIT Willie | 72 |
14 | TOUMIRE Hugo | 69 |
15 | MORENO Adrià | 59 |
16 | BENNETT George | 58 |
17 | SEPÚLVEDA Eduardo | 59 |
18 | MOLENAAR Alex | 63 |
20 | FERNÁNDEZ Rubén | 60 |
21 | CHAIYASOMBAT Thanakhan | 58 |
22 | MOSCON Gianni | 71 |
24 | PAREJA Nichol Blanca | 52 |
26 | JORGENSON Matteo | 69 |
27 | BAX Sjoerd | 78 |