Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 58
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Zberg
1
69 kgJärmann
2
73 kgVinokourov
3
68 kgMickiewicz
5
74 kgWadecki
6
70 kgSpruch
7
68 kgJaskuła
8
76 kgSivakov
9
72 kgKonyshev
11
77 kgChmielewski
12
72 kgOzols
13
74 kgUgrumov
15
58 kgBertoletti
16
75 kgZamana
17
74 kgSypytkowski
19
76 kgAndriotto
20
68 kgPiątek
21
71 kgBonča
25
63 kgPintarič
26
69 kgRomanik
32
62 kgKadlec
33
70 kg
1
69 kgJärmann
2
73 kgVinokourov
3
68 kgMickiewicz
5
74 kgWadecki
6
70 kgSpruch
7
68 kgJaskuła
8
76 kgSivakov
9
72 kgKonyshev
11
77 kgChmielewski
12
72 kgOzols
13
74 kgUgrumov
15
58 kgBertoletti
16
75 kgZamana
17
74 kgSypytkowski
19
76 kgAndriotto
20
68 kgPiątek
21
71 kgBonča
25
63 kgPintarič
26
69 kgRomanik
32
62 kgKadlec
33
70 kg
Weight (KG) →
Result →
77
58
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | ZBERG Markus | 69 |
2 | JÄRMANN Rolf | 73 |
3 | VINOKOUROV Alexandre | 68 |
5 | MICKIEWICZ Jacek | 74 |
6 | WADECKI Piotr | 70 |
7 | SPRUCH Zbigniew | 68 |
8 | JASKUŁA Zenon | 76 |
9 | SIVAKOV Alexei | 72 |
11 | KONYSHEV Dmitry | 77 |
12 | CHMIELEWSKI Piotr | 72 |
13 | OZOLS Dainis | 74 |
15 | UGRUMOV Piotr | 58 |
16 | BERTOLETTI Simone | 75 |
17 | ZAMANA Cezary | 74 |
19 | SYPYTKOWSKI Andrzej | 76 |
20 | ANDRIOTTO Dario | 68 |
21 | PIĄTEK Zbigniew | 71 |
25 | BONČA Valter | 63 |
26 | PINTARIČ Robert | 69 |
32 | ROMANIK Radosław | 62 |
33 | KADLEC Milan | 70 |