Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 23
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Kelly
1
77 kgJaskuła
5
76 kgMadouas
8
70 kgLeMond
10
67 kgBreukink
12
70 kgNevens
15
58 kgArroyo
17
59 kgBölts
19
73 kgSkibby
22
70 kgGianetti
24
62 kgJärmann
25
73 kgBauer
35
72 kgArntz
37
70 kgBortolami
40
73 kgDernies
43
75 kgCenghialta
46
73 kgRichard
56
67 kgElli
60
71 kgYates
72
74 kgde Rooij
73
69 kgBramati
85
72 kgSunderland
88
65 kg
1
77 kgJaskuła
5
76 kgMadouas
8
70 kgLeMond
10
67 kgBreukink
12
70 kgNevens
15
58 kgArroyo
17
59 kgBölts
19
73 kgSkibby
22
70 kgGianetti
24
62 kgJärmann
25
73 kgBauer
35
72 kgArntz
37
70 kgBortolami
40
73 kgDernies
43
75 kgCenghialta
46
73 kgRichard
56
67 kgElli
60
71 kgYates
72
74 kgde Rooij
73
69 kgBramati
85
72 kgSunderland
88
65 kg
Weight (KG) →
Result →
77
58
1
88
# | Rider | Weight (KG) |
---|---|---|
1 | KELLY Sean | 77 |
5 | JASKUŁA Zenon | 76 |
8 | MADOUAS Laurent | 70 |
10 | LEMOND Greg | 67 |
12 | BREUKINK Erik | 70 |
15 | NEVENS Jan | 58 |
17 | ARROYO Miguel | 59 |
19 | BÖLTS Udo | 73 |
22 | SKIBBY Jesper | 70 |
24 | GIANETTI Mauro | 62 |
25 | JÄRMANN Rolf | 73 |
35 | BAUER Steve | 72 |
37 | ARNTZ Marcel | 70 |
40 | BORTOLAMI Gianluca | 73 |
43 | DERNIES Michel | 75 |
46 | CENGHIALTA Bruno | 73 |
56 | RICHARD Pascal | 67 |
60 | ELLI Alberto | 71 |
72 | YATES Sean | 74 |
73 | DE ROOIJ Theo | 69 |
85 | BRAMATI Davide | 72 |
88 | SUNDERLAND Scott | 65 |