Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 76
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Gonov
1
76 kgMcDunphy
2
70 kgKukrle
3
73 kgSchwarzbacher
4
72 kgZoidl
5
63 kgRomele
6
71 kgPękala
10
65 kgStolić
11
73 kgStojnić
12
73 kgRemkhi
16
60 kgNegrente
17
65 kgVăidian
18
67 kgDirnbauer
22
67 kgZangerle
23
68 kgRaileanu
25
63 kgGieracki
27
71 kgKuś
28
70 kgSchönberger
30
64 kgTagliani
31
70 kgKoyama
32
68 kg
1
76 kgMcDunphy
2
70 kgKukrle
3
73 kgSchwarzbacher
4
72 kgZoidl
5
63 kgRomele
6
71 kgPękala
10
65 kgStolić
11
73 kgStojnić
12
73 kgRemkhi
16
60 kgNegrente
17
65 kgVăidian
18
67 kgDirnbauer
22
67 kgZangerle
23
68 kgRaileanu
25
63 kgGieracki
27
71 kgKuś
28
70 kgSchönberger
30
64 kgTagliani
31
70 kgKoyama
32
68 kg
Weight (KG) →
Result →
76
60
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | GONOV Lev | 76 |
2 | MCDUNPHY Conn | 70 |
3 | KUKRLE Michael | 73 |
4 | SCHWARZBACHER Matthias | 72 |
5 | ZOIDL Riccardo | 63 |
6 | ROMELE Alessandro | 71 |
10 | PĘKALA Piotr | 65 |
11 | STOLIĆ Mihajlo | 73 |
12 | STOJNIĆ Veljko | 73 |
16 | REMKHI Rudolf | 60 |
17 | NEGRENTE Mattia | 65 |
18 | VĂIDIAN Iustin-Ioan | 67 |
22 | DIRNBAUER Josef | 67 |
23 | ZANGERLE Emanuel | 68 |
25 | RAILEANU Cristian | 63 |
27 | GIERACKI Patryk | 71 |
28 | KUŚ Adam | 70 |
30 | SCHÖNBERGER Sebastian | 64 |
31 | TAGLIANI Filippo | 70 |
32 | KOYAMA Tomoya | 68 |