Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 34
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
de Maar
1
70 kgFrattini
2
63 kgYates
3
58 kgTaaramäe
4
68 kgLe Mével
5
61 kgIglinskiy
6
68 kgHardy
7
62 kgVanspeybrouck
8
76 kgSijmens
9
69 kgKal
10
72 kgPhelan
11
73 kgSulzberger
12
65 kgFormolo
13
62 kgRebellin
14
63 kgKrizek
15
74 kgVan Hoecke
17
78 kgMas
18
69 kgBoem
19
75 kgGawroński
20
73 kgNorris
21
67 kgBackaert
22
78 kgDomagalski
23
77 kgKreder
24
71 kgTedeschi
25
69 kg
1
70 kgFrattini
2
63 kgYates
3
58 kgTaaramäe
4
68 kgLe Mével
5
61 kgIglinskiy
6
68 kgHardy
7
62 kgVanspeybrouck
8
76 kgSijmens
9
69 kgKal
10
72 kgPhelan
11
73 kgSulzberger
12
65 kgFormolo
13
62 kgRebellin
14
63 kgKrizek
15
74 kgVan Hoecke
17
78 kgMas
18
69 kgBoem
19
75 kgGawroński
20
73 kgNorris
21
67 kgBackaert
22
78 kgDomagalski
23
77 kgKreder
24
71 kgTedeschi
25
69 kg
Weight (KG) →
Result →
78
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | DE MAAR Marc | 70 |
2 | FRATTINI Davide | 63 |
3 | YATES Adam | 58 |
4 | TAARAMÄE Rein | 68 |
5 | LE MÉVEL Christophe | 61 |
6 | IGLINSKIY Valentin | 68 |
7 | HARDY Romain | 62 |
8 | VANSPEYBROUCK Pieter | 76 |
9 | SIJMENS Nico | 69 |
10 | KAL Miraç | 72 |
11 | PHELAN Adam | 73 |
12 | SULZBERGER Wesley | 65 |
13 | FORMOLO Davide | 62 |
14 | REBELLIN Davide | 63 |
15 | KRIZEK Matthias | 74 |
17 | VAN HOECKE Gijs | 78 |
18 | MAS Lluís | 69 |
19 | BOEM Nicola | 75 |
20 | GAWROŃSKI Piotr | 73 |
21 | NORRIS Lachlan | 67 |
22 | BACKAERT Frederik | 78 |
23 | DOMAGALSKI Karol | 77 |
24 | KREDER Wesley | 71 |
25 | TEDESCHI Mirko | 69 |