Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.1 * weight - 88
This means that on average for every extra kilogram weight a rider loses 2.1 positions in the result.
Lelli
1
69 kgGamito
2
66 kgAzevedo
5
59 kgRubiera
10
69 kgHamilton
15
65 kgJemison
17
71 kgSilva
21
68 kgBonča
24
63 kgBarbosa
26
72 kgNardello
29
74 kgvan der Steen
35
70 kgBeltrán
37
60 kgValoti
57
64 kgKjærgaard
76
74 kgBotero
79
75 kgEdo
84
64 kgde Jongh
90
76 kgMoos
99
64 kgMori
101
77 kgTeutenberg
109
66 kgBaffi
117
70 kgMazzoleni
123
67 kg
1
69 kgGamito
2
66 kgAzevedo
5
59 kgRubiera
10
69 kgHamilton
15
65 kgJemison
17
71 kgSilva
21
68 kgBonča
24
63 kgBarbosa
26
72 kgNardello
29
74 kgvan der Steen
35
70 kgBeltrán
37
60 kgValoti
57
64 kgKjærgaard
76
74 kgBotero
79
75 kgEdo
84
64 kgde Jongh
90
76 kgMoos
99
64 kgMori
101
77 kgTeutenberg
109
66 kgBaffi
117
70 kgMazzoleni
123
67 kg
Weight (KG) →
Result →
77
59
1
123
# | Rider | Weight (KG) |
---|---|---|
1 | LELLI Massimiliano | 69 |
2 | GAMITO Vitor | 66 |
5 | AZEVEDO José Bento | 59 |
10 | RUBIERA José Luis | 69 |
15 | HAMILTON Tyler | 65 |
17 | JEMISON Marty | 71 |
21 | SILVA João Pedro | 68 |
24 | BONČA Valter | 63 |
26 | BARBOSA Cândido | 72 |
29 | NARDELLO Daniele | 74 |
35 | VAN DER STEEN Niels | 70 |
37 | BELTRÁN Manuel | 60 |
57 | VALOTI Paolo | 64 |
76 | KJÆRGAARD Steffen | 74 |
79 | BOTERO Santiago | 75 |
84 | EDO Ángel | 64 |
90 | DE JONGH Steven | 76 |
99 | MOOS Alexandre | 64 |
101 | MORI Massimiliano | 77 |
109 | TEUTENBERG Sven | 66 |
117 | BAFFI Adriano | 70 |
123 | MAZZOLENI Eddy | 67 |