Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 22
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Démare
1
76 kgValgren
2
71 kgSénéchal
3
77 kgArndt
4
77.5 kgVan Asbroeck
5
72 kgDuval
6
68 kgLaporte
7
76 kgHoule
8
72 kgSaint-Martin
9
66 kgTurgis
10
63 kgRickaert
11
88 kgDemoitié
12
69 kgAregger
13
70 kgPaillot
14
72 kgSchwarzmann
16
69 kgMatzka
17
69 kgDe Troyer
18
72 kgGouault
19
61 kgKolář
22
90 kgRowsell
23
66 kgMcEvoy
24
67 kg
1
76 kgValgren
2
71 kgSénéchal
3
77 kgArndt
4
77.5 kgVan Asbroeck
5
72 kgDuval
6
68 kgLaporte
7
76 kgHoule
8
72 kgSaint-Martin
9
66 kgTurgis
10
63 kgRickaert
11
88 kgDemoitié
12
69 kgAregger
13
70 kgPaillot
14
72 kgSchwarzmann
16
69 kgMatzka
17
69 kgDe Troyer
18
72 kgGouault
19
61 kgKolář
22
90 kgRowsell
23
66 kgMcEvoy
24
67 kg
Weight (KG) →
Result →
90
61
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | DÉMARE Arnaud | 76 |
2 | VALGREN Michael | 71 |
3 | SÉNÉCHAL Florian | 77 |
4 | ARNDT Nikias | 77.5 |
5 | VAN ASBROECK Tom | 72 |
6 | DUVAL Julien | 68 |
7 | LAPORTE Christophe | 76 |
8 | HOULE Hugo | 72 |
9 | SAINT-MARTIN Clément | 66 |
10 | TURGIS Jimmy | 63 |
11 | RICKAERT Jonas | 88 |
12 | DEMOITIÉ Antoine | 69 |
13 | AREGGER Marcel | 70 |
14 | PAILLOT Yoann | 72 |
16 | SCHWARZMANN Michael | 69 |
17 | MATZKA Ralf | 69 |
18 | DE TROYER Tim | 72 |
19 | GOUAULT Pierre | 61 |
22 | KOLÁŘ Michael | 90 |
23 | ROWSELL Erick | 66 |
24 | MCEVOY Jonathan | 67 |