Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Savitskiy
1
72 kgBanaszek
3
79 kgKurbatov
5
73 kgRamanau
6
68 kgRäim
7
69 kgGrigorev
8
73 kgvan der Poel
9
75 kgLiepiņš
11
67 kgAdams
12
66 kgBertilsson
14
80 kgBaška
16
74 kgLatoń
17
76 kgZhurkin
18
77 kgŠiškevičius
20
70 kgLaas
21
76 kgVanthourenhout
24
62 kgJabrayilov
29
52 kgBeyer
30
75 kgShemetau
34
79 kgAhiyevich
35
70 kgMathis
38
71 kg
1
72 kgBanaszek
3
79 kgKurbatov
5
73 kgRamanau
6
68 kgRäim
7
69 kgGrigorev
8
73 kgvan der Poel
9
75 kgLiepiņš
11
67 kgAdams
12
66 kgBertilsson
14
80 kgBaška
16
74 kgLatoń
17
76 kgZhurkin
18
77 kgŠiškevičius
20
70 kgLaas
21
76 kgVanthourenhout
24
62 kgJabrayilov
29
52 kgBeyer
30
75 kgShemetau
34
79 kgAhiyevich
35
70 kgMathis
38
71 kg
Weight (KG) →
Result →
80
52
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | SAVITSKIY Ivan | 72 |
3 | BANASZEK Adrian | 79 |
5 | KURBATOV Alexey | 73 |
6 | RAMANAU Raman | 68 |
7 | RÄIM Mihkel | 69 |
8 | GRIGOREV Aleksandr | 73 |
9 | VAN DER POEL David | 75 |
11 | LIEPIŅŠ Emīls | 67 |
12 | ADAMS Jens | 66 |
14 | BERTILSSON Christian | 80 |
16 | BAŠKA Erik | 74 |
17 | LATOŃ Eryk | 76 |
18 | ZHURKIN Nikolay | 77 |
20 | ŠIŠKEVIČIUS Paulius | 70 |
21 | LAAS Martin | 76 |
24 | VANTHOURENHOUT Michael | 62 |
29 | JABRAYILOV Samir | 52 |
30 | BEYER Maximilian | 75 |
34 | SHEMETAU Mikhail | 79 |
35 | AHIYEVICH Aleh | 70 |
38 | MATHIS Marco | 71 |