Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 83
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
van der Poel
1
75 kgLaas
2
76 kgBauhaus
5
75 kgStash
8
77 kgNõmmela
9
69 kgNisu
14
84 kgNeilands
17
69 kgPolitt
19
80 kgBeyer
20
75 kgSergis
21
75 kgDubovski
25
75 kgSavitskiy
28
72 kgRäim
30
69 kgWachter
31
72 kgvan der Poel
36
75 kgManakov
37
77 kgŠiškevičius
45
70 kg
1
75 kgLaas
2
76 kgBauhaus
5
75 kgStash
8
77 kgNõmmela
9
69 kgNisu
14
84 kgNeilands
17
69 kgPolitt
19
80 kgBeyer
20
75 kgSergis
21
75 kgDubovski
25
75 kgSavitskiy
28
72 kgRäim
30
69 kgWachter
31
72 kgvan der Poel
36
75 kgManakov
37
77 kgŠiškevičius
45
70 kg
Weight (KG) →
Result →
84
69
1
45
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DER POEL Mathieu | 75 |
2 | LAAS Martin | 76 |
5 | BAUHAUS Phil | 75 |
8 | STASH Mamyr | 77 |
9 | NÕMMELA Aksel | 69 |
14 | NISU Oskar | 84 |
17 | NEILANDS Krists | 69 |
19 | POLITT Nils | 80 |
20 | BEYER Maximilian | 75 |
21 | SERGIS Kaspars | 75 |
25 | DUBOVSKI Vladzislau | 75 |
28 | SAVITSKIY Ivan | 72 |
30 | RÄIM Mihkel | 69 |
31 | WACHTER Alexander | 72 |
36 | VAN DER POEL David | 75 |
37 | MANAKOV Victor | 77 |
45 | ŠIŠKEVIČIUS Paulius | 70 |