Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 57
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Meyer
1
70 kgTanfield
2
79.5 kgBond
3
91 kgScotson
4
77 kgOram
5
68 kgTanfield
8
80 kgDavids
10
72 kgArchibald
11
79 kgTremlett
12
70 kgAreruya
13
74 kgStewart
16
70 kgGee
18
72 kgCoetzee
19
78 kgMiltiadis
20
74 kgBrand
22
76 kgRebours
23
76 kgRougier-Lagane
29
69 kgMayer
30
64 kgBarbara
31
85 kgKagimu
32
63 kgHennis
34
89 kgJamieson
43
75 kgOsborne
50
59 kg
1
70 kgTanfield
2
79.5 kgBond
3
91 kgScotson
4
77 kgOram
5
68 kgTanfield
8
80 kgDavids
10
72 kgArchibald
11
79 kgTremlett
12
70 kgAreruya
13
74 kgStewart
16
70 kgGee
18
72 kgCoetzee
19
78 kgMiltiadis
20
74 kgBrand
22
76 kgRebours
23
76 kgRougier-Lagane
29
69 kgMayer
30
64 kgBarbara
31
85 kgKagimu
32
63 kgHennis
34
89 kgJamieson
43
75 kgOsborne
50
59 kg
Weight (KG) →
Result →
91
59
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | MEYER Cameron | 70 |
2 | TANFIELD Harry | 79.5 |
3 | BOND Hamish | 91 |
4 | SCOTSON Callum | 77 |
5 | ORAM James | 68 |
8 | TANFIELD Charlie | 80 |
10 | DAVIDS Brendon | 72 |
11 | ARCHIBALD John | 79 |
12 | TREMLETT Sebastian | 70 |
13 | ARERUYA Joseph | 74 |
16 | STEWART Mark | 70 |
18 | GEE Derek | 72 |
19 | COETZEE Drikus | 78 |
20 | MILTIADIS Andreas | 74 |
22 | BRAND Sam | 76 |
23 | REBOURS Jack | 76 |
29 | ROUGIER-LAGANE Christopher | 69 |
30 | MAYER Alexandre | 64 |
31 | BARBARA Derek | 85 |
32 | KAGIMU Charles | 63 |
34 | HENNIS Hasani | 89 |
43 | JAMIESON Adam | 75 |
50 | OSBORNE Sherwin | 59 |