Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 21
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Van Moer
2
79 kgCoenen
3
69 kgColman
4
73 kgMarchand
6
61 kgDieleman
7
78 kgBoucher
8
78 kgDe Pestel
9
74 kgStockman
14
67 kgDonders
15
76 kgKers
19
71 kgVerhelst
20
71 kgMarit
21
72 kgFranz
25
60 kgApers
26
70 kgWolffenbuttel
27
79 kgVan Gils
29
63 kgVanhoof
31
75 kgVeling
34
81 kg
2
79 kgCoenen
3
69 kgColman
4
73 kgMarchand
6
61 kgDieleman
7
78 kgBoucher
8
78 kgDe Pestel
9
74 kgStockman
14
67 kgDonders
15
76 kgKers
19
71 kgVerhelst
20
71 kgMarit
21
72 kgFranz
25
60 kgApers
26
70 kgWolffenbuttel
27
79 kgVan Gils
29
63 kgVanhoof
31
75 kgVeling
34
81 kg
Weight (KG) →
Result →
81
60
2
34
# | Rider | Weight (KG) |
---|---|---|
2 | VAN MOER Brent | 79 |
3 | COENEN Dennis | 69 |
4 | COLMAN Alex | 73 |
6 | MARCHAND Gianni | 61 |
7 | DIELEMAN Michiel | 78 |
8 | BOUCHER David | 78 |
9 | DE PESTEL Sander | 74 |
14 | STOCKMAN Abram | 67 |
15 | DONDERS Jelle | 76 |
19 | KERS Koos Jeroen | 71 |
20 | VERHELST Louis | 71 |
21 | MARIT Arne | 72 |
25 | FRANZ Toni | 60 |
26 | APERS Ruben | 70 |
27 | WOLFFENBUTTEL Nils | 79 |
29 | VAN GILS Maxim | 63 |
31 | VANHOOF Ward | 75 |
34 | VELING Quinten | 81 |