Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 20
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Hayter
1
66 kgGeorge
3
78 kgBoven
4
62 kgKooij
8
72 kgRasenberg
12
78 kgWatson
15
68 kgAskey
16
75 kgKrijnsen
17
73 kgvan Sintmaartensdijk
19
77 kgFoldager
31
69 kgDonley
32
75 kgHohmann
33
73 kgDuijvesteijn
47
73 kgThomas
51
61 kgvan der Poel
54
82 kgArtz
74
71 kgSytema
76
78 kgVercouillie
77
66 kg
1
66 kgGeorge
3
78 kgBoven
4
62 kgKooij
8
72 kgRasenberg
12
78 kgWatson
15
68 kgAskey
16
75 kgKrijnsen
17
73 kgvan Sintmaartensdijk
19
77 kgFoldager
31
69 kgDonley
32
75 kgHohmann
33
73 kgDuijvesteijn
47
73 kgThomas
51
61 kgvan der Poel
54
82 kgArtz
74
71 kgSytema
76
78 kgVercouillie
77
66 kg
Weight (KG) →
Result →
82
61
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | HAYTER Leo | 66 |
3 | GEORGE Alfred | 78 |
4 | BOVEN Lars | 62 |
8 | KOOIJ Olav | 72 |
12 | RASENBERG Martijn | 78 |
15 | WATSON Samuel | 68 |
16 | ASKEY Lewis | 75 |
17 | KRIJNSEN Jelte | 73 |
19 | VAN SINTMAARTENSDIJK Roel | 77 |
31 | FOLDAGER Anders | 69 |
32 | DONLEY Shay | 75 |
33 | HOHMANN Lars | 73 |
47 | DUIJVESTEIJN Roy | 73 |
51 | THOMAS Théo | 61 |
54 | VAN DER POEL Rick | 82 |
74 | ARTZ Huub | 71 |
76 | SYTEMA Jesse | 78 |
77 | VERCOUILLIE Victor | 66 |