Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Valgren
1
71 kgCecchin
2
70 kgYates
3
58 kgGrigorev
7
73 kgWürtz Schmidt
10
70 kgvan der Poel
15
75 kgDibben
16
78 kgDoull
19
71 kgSoballa
20
71 kgFoliforov
22
61 kgStash
27
77 kgJabrayilov
28
52 kgFranck
31
86 kgEvtushenko
32
72 kgvan Schip
33
84 kgKirsch
34
78 kgRäim
36
69 kgKnaup
37
61 kgBrusselman
40
76 kgWaerzeggers
43
62 kg
1
71 kgCecchin
2
70 kgYates
3
58 kgGrigorev
7
73 kgWürtz Schmidt
10
70 kgvan der Poel
15
75 kgDibben
16
78 kgDoull
19
71 kgSoballa
20
71 kgFoliforov
22
61 kgStash
27
77 kgJabrayilov
28
52 kgFranck
31
86 kgEvtushenko
32
72 kgvan Schip
33
84 kgKirsch
34
78 kgRäim
36
69 kgKnaup
37
61 kgBrusselman
40
76 kgWaerzeggers
43
62 kg
Weight (KG) →
Result →
86
52
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | VALGREN Michael | 71 |
2 | CECCHIN Alberto | 70 |
3 | YATES Simon | 58 |
7 | GRIGOREV Aleksandr | 73 |
10 | WÜRTZ SCHMIDT Mads | 70 |
15 | VAN DER POEL David | 75 |
16 | DIBBEN Jonathan | 78 |
19 | DOULL Owain | 71 |
20 | SOBALLA Carl | 71 |
22 | FOLIFOROV Alexander | 61 |
27 | STASH Mamyr | 77 |
28 | JABRAYILOV Samir | 52 |
31 | FRANCK Eamon Lucas | 86 |
32 | EVTUSHENKO Alexander | 72 |
33 | VAN SCHIP Jan-Willem | 84 |
34 | KIRSCH Alex | 78 |
36 | RÄIM Mihkel | 69 |
37 | KNAUP Tobias | 61 |
40 | BRUSSELMAN Twan | 76 |
43 | WAERZEGGERS Glenn | 62 |