Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 30
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Fontanelli
1
68 kgSvorada
2
76 kgTchmil
3
75 kgBaldato
4
60 kgBartoli
5
65 kgGuesdon
6
73 kgSimon
8
70 kgde Jongh
9
76 kgKnaven
10
68 kgDufaux
11
60 kgAus
13
75 kgAerts
14
68 kgSergeant
17
76 kgCorvers
18
77 kgBrochard
19
68 kgFeys
21
80 kgCapelle
23
73 kgMeier
24
69 kgSunderland
45
65 kgD'Hollander
47
74 kgWauters
65
73 kgde Vries
67
75 kgMarichal
74
72 kg
1
68 kgSvorada
2
76 kgTchmil
3
75 kgBaldato
4
60 kgBartoli
5
65 kgGuesdon
6
73 kgSimon
8
70 kgde Jongh
9
76 kgKnaven
10
68 kgDufaux
11
60 kgAus
13
75 kgAerts
14
68 kgSergeant
17
76 kgCorvers
18
77 kgBrochard
19
68 kgFeys
21
80 kgCapelle
23
73 kgMeier
24
69 kgSunderland
45
65 kgD'Hollander
47
74 kgWauters
65
73 kgde Vries
67
75 kgMarichal
74
72 kg
Weight (KG) →
Result →
80
60
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | FONTANELLI Fabiano | 68 |
2 | SVORADA Ján | 76 |
3 | TCHMIL Andrei | 75 |
4 | BALDATO Fabio | 60 |
5 | BARTOLI Michele | 65 |
6 | GUESDON Frédéric | 73 |
8 | SIMON François | 70 |
9 | DE JONGH Steven | 76 |
10 | KNAVEN Servais | 68 |
11 | DUFAUX Laurent | 60 |
13 | AUS Lauri | 75 |
14 | AERTS Mario | 68 |
17 | SERGEANT Marc | 76 |
18 | CORVERS Frank | 77 |
19 | BROCHARD Laurent | 68 |
21 | FEYS Wim | 80 |
23 | CAPELLE Christophe | 73 |
24 | MEIER Armin | 69 |
45 | SUNDERLAND Scott | 65 |
47 | D'HOLLANDER Glenn | 74 |
65 | WAUTERS Marc | 73 |
67 | DE VRIES Gerrit | 75 |
74 | MARICHAL Thierry | 72 |