Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 16
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Kerbaol
2
57 kgBertizzolo
4
54 kgBerteau
5
57 kgNeylan
11
52 kgPintar
19
56 kgWilliams
20
66 kgDuval
23
53 kgMalcotti
27
52 kgKasper
32
59 kgLudwig
33
55 kgTeutenberg
36
53 kgMorichon
37
56 kgChristoforou
44
53 kgVandenbulcke
46
60 kgZabelinskaya
50
52 kgFahlin
55
63 kgSimmonds
57
55 kgAndersen
59
55 kgHayes
74
55 kgAllin
78
58 kgFouquenet
80
60 kg
2
57 kgBertizzolo
4
54 kgBerteau
5
57 kgNeylan
11
52 kgPintar
19
56 kgWilliams
20
66 kgDuval
23
53 kgMalcotti
27
52 kgKasper
32
59 kgLudwig
33
55 kgTeutenberg
36
53 kgMorichon
37
56 kgChristoforou
44
53 kgVandenbulcke
46
60 kgZabelinskaya
50
52 kgFahlin
55
63 kgSimmonds
57
55 kgAndersen
59
55 kgHayes
74
55 kgAllin
78
58 kgFouquenet
80
60 kg
Weight (KG) →
Result →
66
52
2
80
# | Rider | Weight (KG) |
---|---|---|
2 | KERBAOL Cédrine | 57 |
4 | BERTIZZOLO Sofia | 54 |
5 | BERTEAU Victoire | 57 |
11 | NEYLAN Rachel | 52 |
19 | PINTAR Urška | 56 |
20 | WILLIAMS Lily | 66 |
23 | DUVAL Eugénie | 53 |
27 | MALCOTTI Barbara | 52 |
32 | KASPER Romy | 59 |
33 | LUDWIG Hannah | 55 |
36 | TEUTENBERG Lea Lin | 53 |
37 | MORICHON Anaïs | 56 |
44 | CHRISTOFOROU Antri | 53 |
46 | VANDENBULCKE Jesse | 60 |
50 | ZABELINSKAYA Olga | 52 |
55 | FAHLIN Emilia | 63 |
57 | SIMMONDS Hayley | 55 |
59 | ANDERSEN Susanne | 55 |
74 | HAYES Connie | 55 |
78 | ALLIN Pauline | 58 |
80 | FOUQUENET Amandine | 60 |