Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 105
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Persico
1
53 kgBerteau
2
57 kgLach
3
59 kgDuval
16
53 kgFouquenet
22
60 kgSchweinberger
24
63 kgMilette
29
52 kgVerhulst-Wild
34
58 kgPintar
36
56 kgFahlin
40
63 kgShapira
45
58 kgRoy
46
66 kgGonzález
49
51 kgTeutenberg
57
53 kgHayes
62
55 kgKakhkhorova
65
53 kgGafinovitz
66
52 kgPomares
84
63 kgVitillo
86
51 kgMissiaggia
93
53 kg
1
53 kgBerteau
2
57 kgLach
3
59 kgDuval
16
53 kgFouquenet
22
60 kgSchweinberger
24
63 kgMilette
29
52 kgVerhulst-Wild
34
58 kgPintar
36
56 kgFahlin
40
63 kgShapira
45
58 kgRoy
46
66 kgGonzález
49
51 kgTeutenberg
57
53 kgHayes
62
55 kgKakhkhorova
65
53 kgGafinovitz
66
52 kgPomares
84
63 kgVitillo
86
51 kgMissiaggia
93
53 kg
Weight (KG) →
Result →
66
51
1
93
# | Rider | Weight (KG) |
---|---|---|
1 | PERSICO Silvia | 53 |
2 | BERTEAU Victoire | 57 |
3 | LACH Marta | 59 |
16 | DUVAL Eugénie | 53 |
22 | FOUQUENET Amandine | 60 |
24 | SCHWEINBERGER Kathrin | 63 |
29 | MILETTE Laury | 52 |
34 | VERHULST-WILD Gladys | 58 |
36 | PINTAR Urška | 56 |
40 | FAHLIN Emilia | 63 |
45 | SHAPIRA Omer | 58 |
46 | ROY Sarah | 66 |
49 | GONZÁLEZ Alicia | 51 |
57 | TEUTENBERG Lea Lin | 53 |
62 | HAYES Connie | 55 |
65 | KAKHKHOROVA Madina | 53 |
66 | GAFINOVITZ Rotem | 52 |
84 | POMARES Cindy | 63 |
86 | VITILLO Matilde | 51 |
93 | MISSIAGGIA Alessia | 53 |