Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 164
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Démare
1
76 kgHutarovich
2
71 kgFlahaut
3
66 kgSoupe
5
70 kgPasseron
6
73 kgAvery
13
90 kgTronet
15
67 kgDevillers
16
62 kgDufrasne
20
70 kgLietaer
23
70 kgBaldo
38
73 kgKneisky
40
68 kgPolazzi
43
63 kgTurgis
45
63 kgWallays
48
64 kgBonnaire
76
67 kgCourteille
78
62 kgMourey
79
62 kgThill
82
73 kgBouhanni
83
65 kg
1
76 kgHutarovich
2
71 kgFlahaut
3
66 kgSoupe
5
70 kgPasseron
6
73 kgAvery
13
90 kgTronet
15
67 kgDevillers
16
62 kgDufrasne
20
70 kgLietaer
23
70 kgBaldo
38
73 kgKneisky
40
68 kgPolazzi
43
63 kgTurgis
45
63 kgWallays
48
64 kgBonnaire
76
67 kgCourteille
78
62 kgMourey
79
62 kgThill
82
73 kgBouhanni
83
65 kg
Weight (KG) →
Result →
90
62
1
83
# | Rider | Weight (KG) |
---|---|---|
1 | DÉMARE Arnaud | 76 |
2 | HUTAROVICH Yauheni | 71 |
3 | FLAHAUT Denis | 66 |
5 | SOUPE Geoffrey | 70 |
6 | PASSERON Aurélien | 73 |
13 | AVERY Clinton | 90 |
15 | TRONET Steven | 67 |
16 | DEVILLERS Gilles | 62 |
20 | DUFRASNE Jonathan | 70 |
23 | LIETAER Eliot | 70 |
38 | BALDO Nicolas | 73 |
40 | KNEISKY Morgan | 68 |
43 | POLAZZI Fabio | 63 |
45 | TURGIS Jimmy | 63 |
48 | WALLAYS Jens | 64 |
76 | BONNAIRE Olivier | 67 |
78 | COURTEILLE Arnaud | 62 |
79 | MOUREY Francis | 62 |
82 | THILL Tom | 73 |
83 | BOUHANNI Nacer | 65 |