Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Feys
5
80 kgRumšas
9
64 kgPankov
10
72 kgDetilloux
13
62 kgDemarbaix
17
64 kgDekker
18
66 kgNys
23
73 kgPeers
26
73 kgVerstraeten
29
65 kgGuyton
34
74 kgMagnien
36
68 kgCretskens
37
75 kgSijmens
44
69 kgDe Neef
46
75 kgTchmil
52
75 kgVan de Wouwer
54
66 kgWauters
61
73 kgThijs
62
69 kgVerstrepen
65
66 kgMoreau
66
71 kg
5
80 kgRumšas
9
64 kgPankov
10
72 kgDetilloux
13
62 kgDemarbaix
17
64 kgDekker
18
66 kgNys
23
73 kgPeers
26
73 kgVerstraeten
29
65 kgGuyton
34
74 kgMagnien
36
68 kgCretskens
37
75 kgSijmens
44
69 kgDe Neef
46
75 kgTchmil
52
75 kgVan de Wouwer
54
66 kgWauters
61
73 kgThijs
62
69 kgVerstrepen
65
66 kgMoreau
66
71 kg
Weight (KG) →
Result →
80
62
5
66
# | Rider | Weight (KG) |
---|---|---|
5 | FEYS Wim | 80 |
9 | RUMŠAS Raimondas | 64 |
10 | PANKOV Oleg | 72 |
13 | DETILLOUX Christophe | 62 |
17 | DEMARBAIX Sébastien | 64 |
18 | DEKKER Erik | 66 |
23 | NYS Sven | 73 |
26 | PEERS Chris | 73 |
29 | VERSTRAETEN Jan | 65 |
34 | GUYTON Scott | 74 |
36 | MAGNIEN Emmanuel | 68 |
37 | CRETSKENS Wilfried | 75 |
44 | SIJMENS Nico | 69 |
46 | DE NEEF Steven | 75 |
52 | TCHMIL Andrei | 75 |
54 | VAN DE WOUWER Kurt | 66 |
61 | WAUTERS Marc | 73 |
62 | THIJS Erwin | 69 |
65 | VERSTREPEN Johan | 66 |
66 | MOREAU Christophe | 71 |