Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 58
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Pronk
1
73 kgTombak
2
71 kgRoberts
4
71 kgBaguet
5
67 kgAmorison
6
70 kgHammond
7
71 kgNys
8
73 kgOmloop
9
78 kgHayman
11
78 kgHunt
15
76 kgSentjens
18
75 kgCoenen
20
67 kgCretskens
21
75 kgMilesi
22
78 kgLouder
23
73 kgKleynen
26
72 kgAugé
28
65 kgAl
29
72 kgStreel
30
69 kgVan Lancker
35
67 kg
1
73 kgTombak
2
71 kgRoberts
4
71 kgBaguet
5
67 kgAmorison
6
70 kgHammond
7
71 kgNys
8
73 kgOmloop
9
78 kgHayman
11
78 kgHunt
15
76 kgSentjens
18
75 kgCoenen
20
67 kgCretskens
21
75 kgMilesi
22
78 kgLouder
23
73 kgKleynen
26
72 kgAugé
28
65 kgAl
29
72 kgStreel
30
69 kgVan Lancker
35
67 kg
Weight (KG) →
Result →
78
65
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | PRONK Matthé | 73 |
2 | TOMBAK Janek | 71 |
4 | ROBERTS Luke | 71 |
5 | BAGUET Serge | 67 |
6 | AMORISON Frédéric | 70 |
7 | HAMMOND Roger | 71 |
8 | NYS Sven | 73 |
9 | OMLOOP Geert | 78 |
11 | HAYMAN Mathew | 78 |
15 | HUNT Jeremy | 76 |
18 | SENTJENS Roy | 75 |
20 | COENEN Johan | 67 |
21 | CRETSKENS Wilfried | 75 |
22 | MILESI Marco | 78 |
23 | LOUDER Jeff | 73 |
26 | KLEYNEN Steven | 72 |
28 | AUGÉ Stéphane | 65 |
29 | AL Thijs | 72 |
30 | STREEL Marc | 69 |
35 | VAN LANCKER Kurt | 67 |