Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Jarc
1
87 kgDron
2
72 kgMol
3
83 kgVanspeybrouck
4
76 kgMarcato
5
67 kgJanorschke
6
78 kgRobert
7
68 kgvan Dijk
8
74 kgKluge
10
83 kgRiesebeek
11
78 kgHovelijnck
12
75 kgvan Empel
13
64 kgvan Goethem
15
77 kgSchoonbroodt
16
78 kgVeuchelen
17
75 kgBarbé
20
75 kgKaisen
21
82 kgMatzka
22
69 kgZabel
23
81 kgVanlandschoot
25
67 kgGroenewegen
26
70 kgSegers
27
78 kgde Wilde
29
74 kg
1
87 kgDron
2
72 kgMol
3
83 kgVanspeybrouck
4
76 kgMarcato
5
67 kgJanorschke
6
78 kgRobert
7
68 kgvan Dijk
8
74 kgKluge
10
83 kgRiesebeek
11
78 kgHovelijnck
12
75 kgvan Empel
13
64 kgvan Goethem
15
77 kgSchoonbroodt
16
78 kgVeuchelen
17
75 kgBarbé
20
75 kgKaisen
21
82 kgMatzka
22
69 kgZabel
23
81 kgVanlandschoot
25
67 kgGroenewegen
26
70 kgSegers
27
78 kgde Wilde
29
74 kg
Weight (KG) →
Result →
87
64
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | JARC Blaž | 87 |
2 | DRON Boris | 72 |
3 | MOL Wouter | 83 |
4 | VANSPEYBROUCK Pieter | 76 |
5 | MARCATO Marco | 67 |
6 | JANORSCHKE Grischa | 78 |
7 | ROBERT Fréderique | 68 |
8 | VAN DIJK Stefan | 74 |
10 | KLUGE Roger | 83 |
11 | RIESEBEEK Oscar | 78 |
12 | HOVELIJNCK Kurt | 75 |
13 | VAN EMPEL Etienne | 64 |
15 | VAN GOETHEM Brian | 77 |
16 | SCHOONBROODT Bob | 78 |
17 | VEUCHELEN Frederik | 75 |
20 | BARBÉ Koen | 75 |
21 | KAISEN Olivier | 82 |
22 | MATZKA Ralf | 69 |
23 | ZABEL Rick | 81 |
25 | VANLANDSCHOOT James | 67 |
26 | GROENEWEGEN Dylan | 70 |
27 | SEGERS Joren | 78 |
29 | DE WILDE Sjef | 74 |