Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Amialiusik
1
53 kgMarche
2
58 kgVekemans
3
52 kgPavlukhina
6
68 kgCecchini
7
52 kgZabelinskaya
9
52 kgBrzeźna
10
56 kgMathiesen
11
71 kgHanselmann
13
55 kgPitel
17
52 kgDuyck
18
60 kgAllen
19
55 kgGafinovitz
20
52 kgGuarischi
22
57 kgAntoshina
23
55 kgBatagelj
24
53 kgKröger
29
77 kgKlein
30
61 kgRitter
31
59 kgBarnes
32
52 kg
1
53 kgMarche
2
58 kgVekemans
3
52 kgPavlukhina
6
68 kgCecchini
7
52 kgZabelinskaya
9
52 kgBrzeźna
10
56 kgMathiesen
11
71 kgHanselmann
13
55 kgPitel
17
52 kgDuyck
18
60 kgAllen
19
55 kgGafinovitz
20
52 kgGuarischi
22
57 kgAntoshina
23
55 kgBatagelj
24
53 kgKröger
29
77 kgKlein
30
61 kgRitter
31
59 kgBarnes
32
52 kg
Weight (KG) →
Result →
77
52
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | AMIALIUSIK Alena | 53 |
2 | MARCHE Shara | 58 |
3 | VEKEMANS Anisha | 52 |
6 | PAVLUKHINA Olena | 68 |
7 | CECCHINI Elena | 52 |
9 | ZABELINSKAYA Olga | 52 |
10 | BRZEŹNA Paulina | 56 |
11 | MATHIESEN Pernille | 71 |
13 | HANSELMANN Nicole | 55 |
17 | PITEL Edwige | 52 |
18 | DUYCK Ann-Sophie | 60 |
19 | ALLEN Jessica | 55 |
20 | GAFINOVITZ Rotem | 52 |
22 | GUARISCHI Barbara | 57 |
23 | ANTOSHINA Tatiana | 55 |
24 | BATAGELJ Polona | 53 |
29 | KRÖGER Mieke | 77 |
30 | KLEIN Lisa | 61 |
31 | RITTER Martina | 59 |
32 | BARNES Hannah | 52 |