Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 27
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Rostovtsev
1
73 kgHonoré
2
68 kgPhilipsen
3
75 kgCharmig
5
66 kgGhys
6
72 kgvan der Horst
7
62 kgDenis
9
67 kgHaller
10
68 kgO'Loughlin
11
72 kgEenkhoorn
12
72 kgRutsch
13
82 kgFernández
14
78 kgFiaschi
16
65 kgGuernalec
21
71 kgHernandez
23
74 kgFoss
24
74 kgLübbers
25
70 kgVerwilst
26
68 kgThijssen
27
74 kgPedersen
29
84 kgGeniets
30
73 kg
1
73 kgHonoré
2
68 kgPhilipsen
3
75 kgCharmig
5
66 kgGhys
6
72 kgvan der Horst
7
62 kgDenis
9
67 kgHaller
10
68 kgO'Loughlin
11
72 kgEenkhoorn
12
72 kgRutsch
13
82 kgFernández
14
78 kgFiaschi
16
65 kgGuernalec
21
71 kgHernandez
23
74 kgFoss
24
74 kgLübbers
25
70 kgVerwilst
26
68 kgThijssen
27
74 kgPedersen
29
84 kgGeniets
30
73 kg
Weight (KG) →
Result →
84
62
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | ROSTOVTSEV Sergey | 73 |
2 | HONORÉ Mikkel Frølich | 68 |
3 | PHILIPSEN Jasper | 75 |
5 | CHARMIG Anthon | 66 |
6 | GHYS Robbe | 72 |
7 | VAN DER HORST Dennis | 62 |
9 | DENIS Thomas | 67 |
10 | HALLER Patrick | 68 |
11 | O'LOUGHLIN Michael | 72 |
12 | EENKHOORN Pascal | 72 |
13 | RUTSCH Jonas | 82 |
14 | FERNÁNDEZ Miguel Ángel | 78 |
16 | FIASCHI Tommaso | 65 |
21 | GUERNALEC Thibault | 71 |
23 | HERNANDEZ Michael | 74 |
24 | FOSS Tobias | 74 |
25 | LÜBBERS Dorian | 70 |
26 | VERWILST Aaron | 68 |
27 | THIJSSEN Gerben | 74 |
29 | PEDERSEN Rasmus Lund | 84 |
30 | GENIETS Kevin | 73 |