Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.6 * weight - 128
This means that on average for every extra kilogram weight a rider loses 2.6 positions in the result.
Veuchelen
1
75 kgIglinskiy
5
67 kgWeylandt
12
72 kgBazayev
16
62 kgClarke
21
70 kgCaethoven
23
67 kgPauwels
24
60 kgde Wilde
26
74 kgVan den Broeck
47
69 kgIglinskiy
58
68 kgNeirynck
63
71 kgHovelijnck
70
75 kgBarbé
76
75 kgVanheule
82
76 kgLisabeth
88
75 kgBichot
90
67 kgBerthou
91
72 kgCalzati
97
68 kgDehaes
101
73 kgIsta
109
70 kgLoosli
113
71 kg
1
75 kgIglinskiy
5
67 kgWeylandt
12
72 kgBazayev
16
62 kgClarke
21
70 kgCaethoven
23
67 kgPauwels
24
60 kgde Wilde
26
74 kgVan den Broeck
47
69 kgIglinskiy
58
68 kgNeirynck
63
71 kgHovelijnck
70
75 kgBarbé
76
75 kgVanheule
82
76 kgLisabeth
88
75 kgBichot
90
67 kgBerthou
91
72 kgCalzati
97
68 kgDehaes
101
73 kgIsta
109
70 kgLoosli
113
71 kg
Weight (KG) →
Result →
76
60
1
113
# | Rider | Weight (KG) |
---|---|---|
1 | VEUCHELEN Frederik | 75 |
5 | IGLINSKIY Maxim | 67 |
12 | WEYLANDT Wouter | 72 |
16 | BAZAYEV Assan | 62 |
21 | CLARKE Hilton | 70 |
23 | CAETHOVEN Steven | 67 |
24 | PAUWELS Kevin | 60 |
26 | DE WILDE Sjef | 74 |
47 | VAN DEN BROECK Jurgen | 69 |
58 | IGLINSKIY Valentin | 68 |
63 | NEIRYNCK Kevin | 71 |
70 | HOVELIJNCK Kurt | 75 |
76 | BARBÉ Koen | 75 |
82 | VANHEULE Bart | 76 |
88 | LISABETH Kenny | 75 |
90 | BICHOT Freddy | 67 |
91 | BERTHOU Eric | 72 |
97 | CALZATI Sylvain | 68 |
101 | DEHAES Kenny | 73 |
109 | ISTA Kevyn | 70 |
113 | LOOSLI David | 71 |