Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 105
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Museeuw
1
71 kgVan Bondt
2
71 kgBruyneel
3
71 kgPeeters
4
76 kgSteels
5
73 kgStreel
7
69 kgFeys
11
80 kgDierckxsens
12
71 kgVerheyen
15
68 kgMattan
17
69 kgVan Lancker
18
67 kgDe Clercq
20
80 kgVerstrepen
26
66 kgThijs
27
69 kgMeirhaeghe
29
70 kgDetilloux
34
62 kgDemarbaix
37
64 kgBeeckman
39
66 kgD'Hollander
40
74 kgVan Hyfte
41
70 kg
1
71 kgVan Bondt
2
71 kgBruyneel
3
71 kgPeeters
4
76 kgSteels
5
73 kgStreel
7
69 kgFeys
11
80 kgDierckxsens
12
71 kgVerheyen
15
68 kgMattan
17
69 kgVan Lancker
18
67 kgDe Clercq
20
80 kgVerstrepen
26
66 kgThijs
27
69 kgMeirhaeghe
29
70 kgDetilloux
34
62 kgDemarbaix
37
64 kgBeeckman
39
66 kgD'Hollander
40
74 kgVan Hyfte
41
70 kg
Weight (KG) →
Result →
80
62
1
41
# | Rider | Weight (KG) |
---|---|---|
1 | MUSEEUW Johan | 71 |
2 | VAN BONDT Geert | 71 |
3 | BRUYNEEL Johan | 71 |
4 | PEETERS Wilfried | 76 |
5 | STEELS Tom | 73 |
7 | STREEL Marc | 69 |
11 | FEYS Wim | 80 |
12 | DIERCKXSENS Ludo | 71 |
15 | VERHEYEN Geert | 68 |
17 | MATTAN Nico | 69 |
18 | VAN LANCKER Kurt | 67 |
20 | DE CLERCQ Hans | 80 |
26 | VERSTREPEN Johan | 66 |
27 | THIJS Erwin | 69 |
29 | MEIRHAEGHE Filip | 70 |
34 | DETILLOUX Christophe | 62 |
37 | DEMARBAIX Sébastien | 64 |
39 | BEECKMAN Koen | 66 |
40 | D'HOLLANDER Glenn | 74 |
41 | VAN HYFTE Paul | 70 |