Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 81
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Hannes
1
51 kgKopecky
2
66 kgD'hoore
3
63 kgDemey
7
56 kgCant
9
57 kgDuyck
10
60 kgVekemans
11
52 kgBeckers
14
67 kgMichiels
15
60 kgSels
22
65 kgFranck
23
51 kgVan Loy
27
65 kgPolspoel
28
59 kgVandenbulcke
29
60 kgde Baat
30
56 kgVerdonschot
33
52 kgMcNally - de Quint
37
56 kgVandenbroucke
40
63 kgDelbaere
56
51 kgDocx
63
52 kg
1
51 kgKopecky
2
66 kgD'hoore
3
63 kgDemey
7
56 kgCant
9
57 kgDuyck
10
60 kgVekemans
11
52 kgBeckers
14
67 kgMichiels
15
60 kgSels
22
65 kgFranck
23
51 kgVan Loy
27
65 kgPolspoel
28
59 kgVandenbulcke
29
60 kgde Baat
30
56 kgVerdonschot
33
52 kgMcNally - de Quint
37
56 kgVandenbroucke
40
63 kgDelbaere
56
51 kgDocx
63
52 kg
Weight (KG) →
Result →
67
51
1
63
# | Rider | Weight (KG) |
---|---|---|
1 | HANNES Kaat | 51 |
2 | KOPECKY Lotte | 66 |
3 | D'HOORE Jolien | 63 |
7 | DEMEY Valerie | 56 |
9 | CANT Sanne | 57 |
10 | DUYCK Ann-Sophie | 60 |
11 | VEKEMANS Anisha | 52 |
14 | BECKERS Isabelle | 67 |
15 | MICHIELS Githa | 60 |
22 | SELS Loes | 65 |
23 | FRANCK Alicia | 51 |
27 | VAN LOY Ellen | 65 |
28 | POLSPOEL Maaike | 59 |
29 | VANDENBULCKE Jesse | 60 |
30 | DE BAAT Kim | 56 |
33 | VERDONSCHOT Laura | 52 |
37 | MCNALLY - DE QUINT Pia | 56 |
40 | VANDENBROUCKE Saartje | 63 |
56 | DELBAERE Fien | 51 |
63 | DOCX Mieke | 52 |