Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Johansen
1
77 kgSalby
4
68 kgMalmberg
5
68 kgRodenberg
6
73 kgLarsen
7
72 kgSander Hansen
8
68 kgGudnitz
10
69 kgEgholm
11
69 kgKnudsen
12
59 kgWacker
13
68 kgFoldager
16
69 kgHindsgaul
17
67 kgHenneberg
23
67 kgPrice-Pejtersen
26
83 kgHulgaard
28
73 kgCharmig
32
66 kgBilde
34
66 kgDahl
39
62 kgGuld
42
67 kg
1
77 kgSalby
4
68 kgMalmberg
5
68 kgRodenberg
6
73 kgLarsen
7
72 kgSander Hansen
8
68 kgGudnitz
10
69 kgEgholm
11
69 kgKnudsen
12
59 kgWacker
13
68 kgFoldager
16
69 kgHindsgaul
17
67 kgHenneberg
23
67 kgPrice-Pejtersen
26
83 kgHulgaard
28
73 kgCharmig
32
66 kgBilde
34
66 kgDahl
39
62 kgGuld
42
67 kg
Weight (KG) →
Result →
83
59
1
42
# | Rider | Weight (KG) |
---|---|---|
1 | JOHANSEN Julius | 77 |
4 | SALBY Alexander | 68 |
5 | MALMBERG Matias | 68 |
6 | RODENBERG Frederik | 73 |
7 | LARSEN Mathias Alexander Erik | 72 |
8 | SANDER HANSEN Marcus | 68 |
10 | GUDNITZ Joshua | 69 |
11 | EGHOLM Jakob | 69 |
12 | KNUDSEN Oliver | 59 |
13 | WACKER Ludvig Anton | 68 |
16 | FOLDAGER Anders | 69 |
17 | HINDSGAUL Jacob | 67 |
23 | HENNEBERG Magnus | 67 |
26 | PRICE-PEJTERSEN Johan | 83 |
28 | HULGAARD Morten | 73 |
32 | CHARMIG Anthon | 66 |
34 | BILDE Thomas | 66 |
39 | DAHL Gustav Frederik | 62 |
42 | GULD Daniel | 67 |