Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
van Emden
1
78 kgMoerenhout
2
74 kgWestra
3
74 kgPosthuma
4
76 kgTerpstra
5
75 kgFlens
6
82 kgBoom
7
75 kgMouris
8
91 kgTjallingii
9
81 kgStamsnijder
10
76 kgReus
11
70 kgKnaven
12
68 kgBellemakers
13
75 kgvan Winden
14
70 kgOostlander
15
78 kgSchmitz
18
77 kgvan Lakerveld
27
85 kg
1
78 kgMoerenhout
2
74 kgWestra
3
74 kgPosthuma
4
76 kgTerpstra
5
75 kgFlens
6
82 kgBoom
7
75 kgMouris
8
91 kgTjallingii
9
81 kgStamsnijder
10
76 kgReus
11
70 kgKnaven
12
68 kgBellemakers
13
75 kgvan Winden
14
70 kgOostlander
15
78 kgSchmitz
18
77 kgvan Lakerveld
27
85 kg
Weight (KG) →
Result →
91
68
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | VAN EMDEN Jos | 78 |
2 | MOERENHOUT Koos | 74 |
3 | WESTRA Lieuwe | 74 |
4 | POSTHUMA Joost | 76 |
5 | TERPSTRA Niki | 75 |
6 | FLENS Rick | 82 |
7 | BOOM Lars | 75 |
8 | MOURIS Jens | 91 |
9 | TJALLINGII Maarten | 81 |
10 | STAMSNIJDER Tom | 76 |
11 | REUS Kai | 70 |
12 | KNAVEN Servais | 68 |
13 | BELLEMAKERS Dirk | 75 |
14 | VAN WINDEN Dennis | 70 |
15 | OOSTLANDER Sander | 78 |
18 | SCHMITZ Bram | 77 |
27 | VAN LAKERVELD Erik | 85 |