Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 30
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Dekker
1
69 kgDekkers
2
72 kgvan Hummel
6
64 kgGiling
8
72 kgMaaskant
10
76 kgVeelers
13
75 kgvan Groen
19
69 kgHoogerland
23
65 kgElijzen
37
80 kgMol
43
83 kgPosthuma
55
76 kgWalgien
56
78 kgHeijboer
57
78 kgde Maar
59
70 kgFlens
67
82 kgClement
70
66 kgde Kort
71
69 kgScheuneman
78
75 kgWeening
79
68 kg
1
69 kgDekkers
2
72 kgvan Hummel
6
64 kgGiling
8
72 kgMaaskant
10
76 kgVeelers
13
75 kgvan Groen
19
69 kgHoogerland
23
65 kgElijzen
37
80 kgMol
43
83 kgPosthuma
55
76 kgWalgien
56
78 kgHeijboer
57
78 kgde Maar
59
70 kgFlens
67
82 kgClement
70
66 kgde Kort
71
69 kgScheuneman
78
75 kgWeening
79
68 kg
Weight (KG) →
Result →
83
64
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | DEKKER Thomas | 69 |
2 | DEKKERS Hans | 72 |
6 | VAN HUMMEL Kenny | 64 |
8 | GILING Bas | 72 |
10 | MAASKANT Martijn | 76 |
13 | VEELERS Tom | 75 |
19 | VAN GROEN Arnoud | 69 |
23 | HOOGERLAND Johnny | 65 |
37 | ELIJZEN Michiel | 80 |
43 | MOL Wouter | 83 |
55 | POSTHUMA Joost | 76 |
56 | WALGIEN Jorrit | 78 |
57 | HEIJBOER Mathieu | 78 |
59 | DE MAAR Marc | 70 |
67 | FLENS Rick | 82 |
70 | CLEMENT Stef | 66 |
71 | DE KORT Koen | 69 |
78 | SCHEUNEMAN Niels | 75 |
79 | WEENING Pieter | 68 |