Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 21
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Leezer
1
76 kgde Baat
2
66 kgvan Emden
3
78 kgKeizer
5
72 kgSchulting
6
70 kgMollema
7
64 kgde Jonge
9
65 kgKruijswijk
11
63 kgVermeltfoort
13
85 kgvan Winden
14
70 kgvan Poppel
15
78 kgvan Zandbeek
20
72 kgPoels
21
66 kgKreder
22
67 kgBoom
24
75 kgLigthart
29
72 kgChaigneau
53
80 kgKers
69
71 kgvan Amerongen
72
70 kgVerschoor
83
74.5 kg
1
76 kgde Baat
2
66 kgvan Emden
3
78 kgKeizer
5
72 kgSchulting
6
70 kgMollema
7
64 kgde Jonge
9
65 kgKruijswijk
11
63 kgVermeltfoort
13
85 kgvan Winden
14
70 kgvan Poppel
15
78 kgvan Zandbeek
20
72 kgPoels
21
66 kgKreder
22
67 kgBoom
24
75 kgLigthart
29
72 kgChaigneau
53
80 kgKers
69
71 kgvan Amerongen
72
70 kgVerschoor
83
74.5 kg
Weight (KG) →
Result →
85
63
1
83
# | Rider | Weight (KG) |
---|---|---|
1 | LEEZER Tom | 76 |
2 | DE BAAT Arjen | 66 |
3 | VAN EMDEN Jos | 78 |
5 | KEIZER Martijn | 72 |
6 | SCHULTING Peter | 70 |
7 | MOLLEMA Bauke | 64 |
9 | DE JONGE Maarten | 65 |
11 | KRUIJSWIJK Steven | 63 |
13 | VERMELTFOORT Coen | 85 |
14 | VAN WINDEN Dennis | 70 |
15 | VAN POPPEL Boy | 78 |
20 | VAN ZANDBEEK Ronan | 72 |
21 | POELS Wout | 66 |
22 | KREDER Michel | 67 |
24 | BOOM Lars | 75 |
29 | LIGTHART Pim | 72 |
53 | CHAIGNEAU Robin | 80 |
69 | KERS Koos Jeroen | 71 |
72 | VAN AMERONGEN Thijs | 70 |
83 | VERSCHOOR Martijn | 74.5 |