Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Sunderland
1
65 kgvan Bon
2
72 kgPeers
3
73 kgHoffman
4
80 kgFeys
5
80 kgThijs
7
69 kgDe Waele
8
62 kgMichaelsen
10
79 kgVan de Wouwer
11
66 kgGaute Hølestøl
12
83 kgHøj
13
80 kgDetilloux
14
62 kgDe Clercq
15
80 kgBomans
16
74 kgVoskamp
18
75 kgCorvers
20
77 kgIvanov
23
73 kgDe Waele
28
71 kgPankov
30
72 kg
1
65 kgvan Bon
2
72 kgPeers
3
73 kgHoffman
4
80 kgFeys
5
80 kgThijs
7
69 kgDe Waele
8
62 kgMichaelsen
10
79 kgVan de Wouwer
11
66 kgGaute Hølestøl
12
83 kgHøj
13
80 kgDetilloux
14
62 kgDe Clercq
15
80 kgBomans
16
74 kgVoskamp
18
75 kgCorvers
20
77 kgIvanov
23
73 kgDe Waele
28
71 kgPankov
30
72 kg
Weight (KG) →
Result →
83
62
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | SUNDERLAND Scott | 65 |
2 | VAN BON Léon | 72 |
3 | PEERS Chris | 73 |
4 | HOFFMAN Tristan | 80 |
5 | FEYS Wim | 80 |
7 | THIJS Erwin | 69 |
8 | DE WAELE Fabien | 62 |
10 | MICHAELSEN Lars | 79 |
11 | VAN DE WOUWER Kurt | 66 |
12 | GAUTE HØLESTØL Svein | 83 |
13 | HØJ Frank | 80 |
14 | DETILLOUX Christophe | 62 |
15 | DE CLERCQ Hans | 80 |
16 | BOMANS Carlo | 74 |
18 | VOSKAMP Bart | 75 |
20 | CORVERS Frank | 77 |
23 | IVANOV Sergei | 73 |
28 | DE WAELE Bert | 71 |
30 | PANKOV Oleg | 72 |