Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
van Bon
1
72 kgVierhouten
2
71 kgSteurs
3
77 kgVan Avermaet
4
74 kgEichler
5
78 kgOmloop
6
78 kgVanlandschoot
8
67 kgCurvers
9
73 kgTjallingii
10
81 kgWeissinger
11
74 kgClarke
12
70 kgLjungblad
13
70 kgGajek
14
74 kgCoenen
15
67 kgCretskens
16
75 kgTimmer
17
77 kgSteels
18
73 kgPronk
19
73 kgEeckhout
21
73 kgVasseur
22
70 kg
1
72 kgVierhouten
2
71 kgSteurs
3
77 kgVan Avermaet
4
74 kgEichler
5
78 kgOmloop
6
78 kgVanlandschoot
8
67 kgCurvers
9
73 kgTjallingii
10
81 kgWeissinger
11
74 kgClarke
12
70 kgLjungblad
13
70 kgGajek
14
74 kgCoenen
15
67 kgCretskens
16
75 kgTimmer
17
77 kgSteels
18
73 kgPronk
19
73 kgEeckhout
21
73 kgVasseur
22
70 kg
Weight (KG) →
Result →
81
67
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | VAN BON Léon | 72 |
2 | VIERHOUTEN Aart | 71 |
3 | STEURS Geert | 77 |
4 | VAN AVERMAET Greg | 74 |
5 | EICHLER Markus | 78 |
6 | OMLOOP Geert | 78 |
8 | VANLANDSCHOOT James | 67 |
9 | CURVERS Roy | 73 |
10 | TJALLINGII Maarten | 81 |
11 | WEISSINGER René | 74 |
12 | CLARKE Hilton | 70 |
13 | LJUNGBLAD Jonas | 70 |
14 | GAJEK Artur | 74 |
15 | COENEN Johan | 67 |
16 | CRETSKENS Wilfried | 75 |
17 | TIMMER Albert | 77 |
18 | STEELS Tom | 73 |
19 | PRONK Matthé | 73 |
21 | EECKHOUT Niko | 73 |
22 | VASSEUR Cédric | 70 |