Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 24
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Schmitz
2
77 kgVan Staeyen
3
62 kgWestra
4
74 kgVierhouten
5
71 kgPower
7
68 kgVanthourenhout
8
65 kgNys
10
73 kgFriedemann
13
75 kgGruzdev
16
78 kgvan Groen
20
69 kgMol
21
83 kgVanthourenhout
25
64 kgLjungblad
26
70 kgLigthart
28
72 kgStam
35
64 kgvan Emden
36
78 kgBoom
41
75 kgAlbert
43
73 kgScheuneman
47
75 kgMüller
52
69 kgvan Amerongen
55
70 kgSchep
64
80 kgShushemoin
66
62 kg
2
77 kgVan Staeyen
3
62 kgWestra
4
74 kgVierhouten
5
71 kgPower
7
68 kgVanthourenhout
8
65 kgNys
10
73 kgFriedemann
13
75 kgGruzdev
16
78 kgvan Groen
20
69 kgMol
21
83 kgVanthourenhout
25
64 kgLjungblad
26
70 kgLigthart
28
72 kgStam
35
64 kgvan Emden
36
78 kgBoom
41
75 kgAlbert
43
73 kgScheuneman
47
75 kgMüller
52
69 kgvan Amerongen
55
70 kgSchep
64
80 kgShushemoin
66
62 kg
Weight (KG) →
Result →
83
62
2
66
# | Rider | Weight (KG) |
---|---|---|
2 | SCHMITZ Bram | 77 |
3 | VAN STAEYEN Michael | 62 |
4 | WESTRA Lieuwe | 74 |
5 | VIERHOUTEN Aart | 71 |
7 | POWER Ciarán | 68 |
8 | VANTHOURENHOUT Sven | 65 |
10 | NYS Sven | 73 |
13 | FRIEDEMANN Matthias | 75 |
16 | GRUZDEV Dmitriy | 78 |
20 | VAN GROEN Arnoud | 69 |
21 | MOL Wouter | 83 |
25 | VANTHOURENHOUT Dieter | 64 |
26 | LJUNGBLAD Jonas | 70 |
28 | LIGTHART Pim | 72 |
35 | STAM Danny | 64 |
36 | VAN EMDEN Jos | 78 |
41 | BOOM Lars | 75 |
43 | ALBERT Niels | 73 |
47 | SCHEUNEMAN Niels | 75 |
52 | MÜLLER Christian | 69 |
55 | VAN AMERONGEN Thijs | 70 |
64 | SCHEP Peter | 80 |
66 | SHUSHEMOIN Alexandr | 62 |