Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 68
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Vanderaerden
5
74 kgPlanckaert
7
69 kgSergeant
9
76 kgKelly
11
77 kgDe Wilde
14
70 kgKuiper
17
69 kgBauer
18
72 kgLeMond
19
67 kgSolleveld
25
93 kgde Rooij
29
69 kgVilamajo
37
70 kgPeeters
39
76 kgHolm Sørensen
42
77 kgLilholt
46
72 kgMadiot
56
68 kgMarie
59
68 kgNijdam
62
70 kg
5
74 kgPlanckaert
7
69 kgSergeant
9
76 kgKelly
11
77 kgDe Wilde
14
70 kgKuiper
17
69 kgBauer
18
72 kgLeMond
19
67 kgSolleveld
25
93 kgde Rooij
29
69 kgVilamajo
37
70 kgPeeters
39
76 kgHolm Sørensen
42
77 kgLilholt
46
72 kgMadiot
56
68 kgMarie
59
68 kgNijdam
62
70 kg
Weight (KG) →
Result →
93
67
5
62
# | Rider | Weight (KG) |
---|---|---|
5 | VANDERAERDEN Eric | 74 |
7 | PLANCKAERT Eddy | 69 |
9 | SERGEANT Marc | 76 |
11 | KELLY Sean | 77 |
14 | DE WILDE Etienne | 70 |
17 | KUIPER Hennie | 69 |
18 | BAUER Steve | 72 |
19 | LEMOND Greg | 67 |
25 | SOLLEVELD Gerrit | 93 |
29 | DE ROOIJ Theo | 69 |
37 | VILAMAJO Jaime | 70 |
39 | PEETERS Wilfried | 76 |
42 | HOLM SØRENSEN Brian | 77 |
46 | LILHOLT Søren | 72 |
56 | MADIOT Marc | 68 |
59 | MARIE Thierry | 68 |
62 | NIJDAM Jelle | 70 |