Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 102
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Wild
1
75 kgTeutenberg
2
64 kgVos
3
58 kgValen
4
62 kgDe Vocht
6
61 kgKoedooder
7
69 kgGunnewijk
9
67 kgVisser
10
59 kgvan Dijk
15
71 kgBeltman
18
68 kgSlappendel
25
67 kgvan der Breggen
31
56 kgFahlin
37
63 kgvan den Broek-Blaak
44
64 kgAbbott
48
52 kgCarrigan
52
60 kg
1
75 kgTeutenberg
2
64 kgVos
3
58 kgValen
4
62 kgDe Vocht
6
61 kgKoedooder
7
69 kgGunnewijk
9
67 kgVisser
10
59 kgvan Dijk
15
71 kgBeltman
18
68 kgSlappendel
25
67 kgvan der Breggen
31
56 kgFahlin
37
63 kgvan den Broek-Blaak
44
64 kgAbbott
48
52 kgCarrigan
52
60 kg
Weight (KG) →
Result →
75
52
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | WILD Kirsten | 75 |
2 | TEUTENBERG Ina-Yoko | 64 |
3 | VOS Marianne | 58 |
4 | VALEN Anita | 62 |
6 | DE VOCHT Liesbet | 61 |
7 | KOEDOODER Vera | 69 |
9 | GUNNEWIJK Loes | 67 |
10 | VISSER Adrie | 59 |
15 | VAN DIJK Ellen | 71 |
18 | BELTMAN Chantal | 68 |
25 | SLAPPENDEL Iris | 67 |
31 | VAN DER BREGGEN Anna | 56 |
37 | FAHLIN Emilia | 63 |
44 | VAN DEN BROEK-BLAAK Chantal | 64 |
48 | ABBOTT Mara | 52 |
52 | CARRIGAN Sara | 60 |