Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Becker
3
64 kgArndt
8
59 kgCantele
13
58 kgWild
15
75 kgJohansson
17
58 kgDe Vocht
18
61 kgTreier
22
62 kgvan Dijk
23
71 kgMustonen
24
58 kgWrubleski
27
55 kgvan Vleuten
28
59 kgDoppmann
31
55 kgGunnewijk
34
67 kgSlappendel
35
67 kgThornburn
38
56 kgSoeder
39
52 kgVisser
41
59 kgVillumsen
45
59 kg
3
64 kgArndt
8
59 kgCantele
13
58 kgWild
15
75 kgJohansson
17
58 kgDe Vocht
18
61 kgTreier
22
62 kgvan Dijk
23
71 kgMustonen
24
58 kgWrubleski
27
55 kgvan Vleuten
28
59 kgDoppmann
31
55 kgGunnewijk
34
67 kgSlappendel
35
67 kgThornburn
38
56 kgSoeder
39
52 kgVisser
41
59 kgVillumsen
45
59 kg
Weight (KG) →
Result →
75
52
3
45
# | Rider | Weight (KG) |
---|---|---|
3 | BECKER Charlotte | 64 |
8 | ARNDT Judith | 59 |
13 | CANTELE Noemi | 58 |
15 | WILD Kirsten | 75 |
17 | JOHANSSON Emma | 58 |
18 | DE VOCHT Liesbet | 61 |
22 | TREIER Grete | 62 |
23 | VAN DIJK Ellen | 71 |
24 | MUSTONEN Sara | 58 |
27 | WRUBLESKI Alex | 55 |
28 | VAN VLEUTEN Annemiek | 59 |
31 | DOPPMANN Priska | 55 |
34 | GUNNEWIJK Loes | 67 |
35 | SLAPPENDEL Iris | 67 |
38 | THORNBURN Christine | 56 |
39 | SOEDER Christiane | 52 |
41 | VISSER Adrie | 59 |
45 | VILLUMSEN Linda | 59 |