Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 35
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Konovalovas
1
74 kgHermans
2
72 kgSonnery
3
60 kgRolland
4
70 kgEl Fares
5
62 kgSenac
7
63 kgMartin
8
59 kgPeterson
10
70 kgVanendert
15
62 kgSeeldraeyers
17
60 kgStetina
20
63 kgVanspeybrouck
22
76 kgMartin
24
75 kgMeersman
26
63 kgBaugnies
27
69 kgRoux
28
73 kgDrouilly
40
62 kgGudsell
41
77 kgPfingsten
49
69 kgLewis
50
65 kgQuéméneur
62
67 kgPeyroton-Dartet
64
65 kgChtioui
66
82 kg
1
74 kgHermans
2
72 kgSonnery
3
60 kgRolland
4
70 kgEl Fares
5
62 kgSenac
7
63 kgMartin
8
59 kgPeterson
10
70 kgVanendert
15
62 kgSeeldraeyers
17
60 kgStetina
20
63 kgVanspeybrouck
22
76 kgMartin
24
75 kgMeersman
26
63 kgBaugnies
27
69 kgRoux
28
73 kgDrouilly
40
62 kgGudsell
41
77 kgPfingsten
49
69 kgLewis
50
65 kgQuéméneur
62
67 kgPeyroton-Dartet
64
65 kgChtioui
66
82 kg
Weight (KG) →
Result →
82
59
1
66
# | Rider | Weight (KG) |
---|---|---|
1 | KONOVALOVAS Ignatas | 74 |
2 | HERMANS Ben | 72 |
3 | SONNERY Blaise | 60 |
4 | ROLLAND Pierre | 70 |
5 | EL FARES Julien | 62 |
7 | SENAC Jean-Charles | 63 |
8 | MARTIN Dan | 59 |
10 | PETERSON Tom | 70 |
15 | VANENDERT Jelle | 62 |
17 | SEELDRAEYERS Kevin | 60 |
20 | STETINA Peter | 63 |
22 | VANSPEYBROUCK Pieter | 76 |
24 | MARTIN Tony | 75 |
26 | MEERSMAN Gianni | 63 |
27 | BAUGNIES Jérôme | 69 |
28 | ROUX Anthony | 73 |
40 | DROUILLY Mathieu | 62 |
41 | GUDSELL Timothy | 77 |
49 | PFINGSTEN Christoph | 69 |
50 | LEWIS Craig | 65 |
62 | QUÉMÉNEUR Perrig | 67 |
64 | PEYROTON-DARTET Thomas | 65 |
66 | CHTIOUI Rafaâ | 82 |